1,147 research outputs found
Recommended from our members
Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism.
KCNE genes encode single transmembrane-domain subunits, the MinK-related peptides (MiRPs), which assemble with pore-forming alpha subunits to establish the attributes of potassium channels in vivo. To investigate whether MinK, MiRP1, and MiRP2 operate similarly with their known native alpha subunit partners (KCNQ1, HERG, and Kv3.4, respectively) two conserved residues associated with human disease and influential in channel function were evaluated. As MiRPs assemble with a variety of alpha subunits in experimental cells and may do so in vivo, each peptide was also assessed with the other two alpha subunits. Inherited mutation of aspartate to asparagine (D --> N) to yield D76N-MinK is linked to cardiac arrhythmia and deafness; the analogs D82N-MiRP1 and D90N-MiRP2 were studied. Mutation of arginine to histidine (R --> H) to yield R83H-MiRP2 is associated with periodic paralysis; the analogs K69H-MinK and K75H-MiRP1 were also studied. Macroscopic and single-channel currents showed that D --> N mutations suppressed a subset of functions whereas R/K --> H changes altered the activity of MinK, MiRP1, and MiRP2 with all three alpha subunits. The findings indicate that the KCNE peptides interact similarly with different alpha subunits and suggest a hypothesis: that clinical manifestations of inherited KCNE point mutations result from disruption of multiple native currents via promiscuous interactions
Recommended from our members
Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.
MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK(a) approximately 7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis
The Role of S4 Charges in Voltage-dependent and Voltage-independent KCNQ1 Potassium Channel Complexes
Voltage-gated potassium (Kv) channels extend their functional repertoire by coassembling with MinK-related peptides (MiRPs). MinK slows the activation of channels formed with KCNQ1 α subunits to generate the voltage-dependent IKs channel in human heart; MiRP1 and MiRP2 remove the voltage dependence of KCNQ1 to generate potassium “leak” currents in gastrointestinal epithelia. Other Kv α subunits interact with MiRP1 and MiRP2 but without loss of voltage dependence; the mechanism for this disparity is unknown. Here, sequence alignments revealed that the voltage-sensing S4 domain of KCNQ1 bears lower net charge (+3) than that of any other eukaryotic voltage-gated ion channel. We therefore examined the role of KCNQ1 S4 charges in channel activation using alanine-scanning mutagenesis and two-electrode voltage clamp. Alanine replacement of R231, at the N-terminal side of S4, produced constitutive activation in homomeric KCNQ1 channels, a phenomenon not observed with previous single amino acid substitutions in S4 of other channels. Homomeric KCNQ4 channels were also made constitutively active by mutagenesis to mimic the S4 charge balance of R231A-KCNQ1. Loss of single S4 charges at positions R231 or R237 produced constitutively active MinK-KCNQ1 channels and increased the constitutively active component of MiRP2-KCNQ1 currents. Charge addition to the CO2H-terminal half of S4 eliminated constitutive activation in MiRP2-KCNQ1 channels, whereas removal of homologous charges from KCNQ4 S4 produced constitutively active MiRP2-KCNQ4 channels. The results demonstrate that the unique S4 charge paucity of KCNQ1 facilitates its unique conversion to a leak channel by ancillary subunits such as MiRP2
Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice.
Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P < 0.05). Similarly, Kv current density was 25% greater in ventricular myocytes from young adult males (P < 0.05). Germ-line Kcne4 deletion eliminated the sex-specific Kv current disparity by diminishing ventricular fast transient outward current (Ito,f) and slowly activating K(+) current (IK,slow1). Kcne4 deletion also reduced Kv currents in male mouse atrial myocytes, by >45% (P < 0.001). As we previously found for Kv4.2 (which generates mouse Ito,f), heterologously expressed KCNE4 functionally regulated Kv1.5 (the Kv α subunit that generates IKslow1 in mice). Of note, in postmenopausal female mice, ventricular repolarization was impaired by Kcne4 deletion, and ventricular Kcne4 expression increased to match that of males. Moreover, castration diminished male ventricular Kcne4 expression 2.8-fold, whereas 5α-dihydrotestosterone (DHT) implants in castrated mice increased Kcne4 expression >3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a DHT-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis
Cardioprotective Effect of Histamine H 3 -Receptor Activation: Pivotal Role of G␥-Dependent Inhibition of Voltage-Operated Ca 2ϩ Channels
ABSTRACT We previously showed that activation of G i/o -coupled histamine H 3 -receptors (H 3 R) is cardioprotective because it attenuates excessive norepinephrine release from cardiac sympathetic nerves. This action is characterized by a marked decrease in intraneuronal Ca 2ϩ ([Ca 2ϩ ] i ), as G␣ i impairs the adenylyl cyclasecAMP-protein kinase A (PKA) pathway, and this decreases Ca 2ϩ influx via voltage-operated Ca 2ϩ channels (VOCC). Yet, the G i/oderived ␥ dimer could directly inhibit VOCC, and the subsequent reduction in Ca 2ϩ influx would be responsible for the H 3 Rmediated attenuation of transmitter exocytosis. In this study, we tested this hypothesis in nerve-growth factor-differentiated rat pheochromocytoma cells (PC12) stably transfected with H 3 R (PC12-H 3 ) and with the G␥ scavenger -adrenergic receptor kinase 1 (-ARK1)-(495-689)-polypeptide (PC12-H 3 /-ARK1). Thus, we evaluated the effects of H 3 R activation directly on the following: 1) Ca 2ϩ current (I Ca ) using the whole-cell patchclamp technique; and 2) K ϩ -induced exocytosis of endogenous dopamine. H 3 R activation attenuated both peak I Ca and dopamine exocytosis in PC12-H 3 but not in PC12-H 3 /-ARK1 cells. Moreover, a membrane permeable phosducin-like G␥ scavenger also prevented the antiexocytotic effect of H 3 R activation. In contrast, the H 3 R-induced attenuation of cAMP accumulation and dopamine exocytosis in response to forskolin were the same in both PC12-H 3 and PC12-H 3 /-ARK1 cells. Our findings reveal that although G␣ i participates in the H 3 -mediated antiexocytotic effect when the adenylyl cyclase-cAMP-PKA pathway is stimulated, a direct G␥-induced inhibition of VOCC, resulting in an attenuation of I Ca , plays a pivotal role in the H 3 R-mediated decrease in [Ca 2ϩ ] i and associated cardioprotective antiexocytotic effects. The discovery of this H 3 R-signaling step may offer new therapeutic approaches to cardiovascular diseases characterized by hyperadrenergic activity
MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia.
A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors
Relaxing the Parity Conditions of Asymptotically Flat Gravity
Four-dimensional asymptotically flat spacetimes at spatial infinity are
defined from first principles without imposing parity conditions or
restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a
correct variational principle when it is supplemented by an anomalous
counter-term which breaks asymptotic translation, supertranslation and
logarithmic translation invariance. Poincar\'e transformations as well as
supertranslations and logarithmic translations are associated with finite and
conserved charges which represent the asymptotic symmetry group. Lorentz
charges as well as logarithmic translations transform anomalously under a
change of regulator. Lorentz charges are generally non-linear functionals of
the asymptotic fields but reduce to well-known linear expressions when parity
conditions hold. We also define a covariant phase space of asymptotically flat
spacetimes with parity conditions but without restrictions on the Weyl tensor.
In this phase space, the anomaly plays classically no dynamical role.
Supertranslations are pure gauge and the asymptotic symmetry group is the
expected Poincar\'e group.Comment: Four equations corrected. Two references adde
Targeted Deletion of Kcne2 Causes Gastritis Cystica Profunda and Gastric Neoplasia
Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 α subunit and the KCNE2 β subunit provide a K+ efflux current to facilitate gastric acid secretion by the apical H+K+ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2−/− mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2−/−mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia
Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely
- …