5 research outputs found
Application of POSS nanotechnology for preparation of efficient Ni catalysts for hydrogen production
POSS (polyhedral oligomeric silsesquioxanes) nanotechnology was applied for preparation of efficient Ni catalysts for hydrogen production through autothermal reforming of methane (ATR of CH4). The novel metal-POSS precursor [Nickel (II) ‒ HeptaisobutylPOSS (C4H9)7Si7O9(OH)O2Ni] of Ni nanoparticles was introduced into Ce0.5Zr0.5O2 support with following calcination and reduction stages of activation. The peculiarity of the genesis of Ni/SiO2/Ce0.5Zr0.5O2 nanomaterials and their characteristics versus deposition mode were studied by X-ray fluorescence spectroscopy, thermal analysis, N2 adsorption, X-ray diffraction, high-resolution transmission electron microscopy and H2 temperature-programmed reduction. The two kinds of supported Ni-containing particles were observed: highly dispersed Ni forms (1‒2 nm) and large Ni-containing particles (up to 50‒100 nm in size). It was demonstrated that the textural, structural, red-ox and, consequently, catalytic properties of ex-Ni-POSS catalysts depend on the deposition mode. The increase of a portion of difficultly reduced Ni2+ species is found upon application of intermediate calcination during Ni-POSS deposition that has detrimental effect on the activity of catalyst in ATR of CH4. The Ni/SiO2/Ce0.5Zr0.5O2 catalyst prepared by one-step Ni-POSS deposition exhibits the highest H2 yield ‒ 80% at T = 800 °C
Effect of preparation mode on the properties of Mn-Na-W/ Sio2 catalysts for oxidative coupling of methane: conventional methods vs. POSS nanotechnology
Using XPS, BET, XRD, TG-DTA, HRTEM-EDX, TPR and UV-Vis Diffuse Reflectance spectroscopic methods the electronic, redox and structural properties of Mn-Na-W/ SiO2 catalysts prepared by the incipient wetness impregnation method and mixture slurry method were studied in detail. Since POSS nanotechnology (POSS = polyhedral oligomeric silsesquioxanes) has attracted attention as tooling for synthesis of catalysts with novel properties and functionalities, we expanded this method for the preparation of Mn-Na-W/ SiO2 catalyst. The physicochemical and catalytic properties of Mn-Na-W/ SiO2 catalysts prepared by conventional methods and POSS nanotechnology were examined comparatively. In all studied Mn-Na-W/ SiO2 catalysts both individual oxides (MnOx, WO3) and bimetal oxide phases (Na2WO4, MnWO4) are found in addition to oxide particles of high dispersion. The UV-Vis Diffuse Reflectance indicates that Na+ cations facilitates stabilization of octahedrally coordinated Mn3+ Oh cations in the isolated state, while Mn3+ Oh promote the disordering of W6+ cations in the supported system. The Mn-Na-W/ SiO2 prepared using metal-POSS precursors marks out presence of unglobular SiO2 particles, higher dispersion of MnOx and MnWO4 particles and more easily reducible metal-oxide species. The catalysts prepared by incipient impregnation method and mixture slurry method have practically similar catalytic performance while the catalyst prepared by POSS nanotechnology method shows lower activity and selectivity. At 800−850 °C the increase of C2 hydrocarbons yield from 4 to 15% and the rise of molar ratio C2H4/C2H6 from 0.2 to 1 are observed when impregnation or mixture slurry method are used for catalyst preparation instead of POSS nanotechnology method
Effect of preparation mode on the properties of Mn-Na-W/ Sio<sub>2</sub> catalysts for oxidative coupling of methane:conventional methods vs. POSS nanotechnology
Using XPS, BET, XRD, TG-DTA, HRTEM-EDX, TPR and UV-Vis Diffuse Reflectance spectroscopic methods the electronic, redox and structural properties of Mn-Na-W/ SiO2 catalysts prepared by the incipient wetness impregnation method and mixture slurry method were studied in detail. Since POSS nanotechnology (POSS = polyhedral oligomeric silsesquioxanes) has attracted attention as tooling for synthesis of catalysts with novel properties and functionalities, we expanded this method for the preparation of Mn-Na-W/ SiO2 catalyst. The physicochemical and catalytic properties of Mn-Na-W/ SiO2 catalysts prepared by conventional methods and POSS nanotechnology were examined comparatively. In all studied Mn-Na-W/ SiO2 catalysts both individual oxides (MnOx, WO3) and bimetal oxide phases (Na2WO4, MnWO4) are found in addition to oxide particles of high dispersion. The UV-Vis Diffuse Reflectance indicates that Na+ cations facilitates stabilization of octahedrally coordinated Mn3+ Oh cations in the isolated state, while Mn3+ Oh promote the disordering of W6+ cations in the supported system. The Mn-Na-W/ SiO2 prepared using metal-POSS precursors marks out presence of unglobular SiO2 particles, higher dispersion of MnOx and MnWO4 particles and more easily reducible metal-oxide species. The catalysts prepared by incipient impregnation method and mixture slurry method have practically similar catalytic performance while the catalyst prepared by POSS nanotechnology method shows lower activity and selectivity. At 800−850 °C the increase of C2 hydrocarbons yield from 4 to 15% and the rise of molar ratio C2H4/C2H6 from 0.2 to 1 are observed when impregnation or mixture slurry method are used for catalyst preparation instead of POSS nanotechnology method.</p
Effect of preparation mode on the properties of Mn-Na-W/ Sio<sub>2</sub> catalysts for oxidative coupling of methane:conventional methods vs. POSS nanotechnology
Using XPS, BET, XRD, TG-DTA, HRTEM-EDX, TPR and UV-Vis Diffuse Reflectance spectroscopic methods the electronic, redox and structural properties of Mn-Na-W/ SiO2 catalysts prepared by the incipient wetness impregnation method and mixture slurry method were studied in detail. Since POSS nanotechnology (POSS = polyhedral oligomeric silsesquioxanes) has attracted attention as tooling for synthesis of catalysts with novel properties and functionalities, we expanded this method for the preparation of Mn-Na-W/ SiO2 catalyst. The physicochemical and catalytic properties of Mn-Na-W/ SiO2 catalysts prepared by conventional methods and POSS nanotechnology were examined comparatively. In all studied Mn-Na-W/ SiO2 catalysts both individual oxides (MnOx, WO3) and bimetal oxide phases (Na2WO4, MnWO4) are found in addition to oxide particles of high dispersion. The UV-Vis Diffuse Reflectance indicates that Na+ cations facilitates stabilization of octahedrally coordinated Mn3+ Oh cations in the isolated state, while Mn3+ Oh promote the disordering of W6+ cations in the supported system. The Mn-Na-W/ SiO2 prepared using metal-POSS precursors marks out presence of unglobular SiO2 particles, higher dispersion of MnOx and MnWO4 particles and more easily reducible metal-oxide species. The catalysts prepared by incipient impregnation method and mixture slurry method have practically similar catalytic performance while the catalyst prepared by POSS nanotechnology method shows lower activity and selectivity. At 800−850 °C the increase of C2 hydrocarbons yield from 4 to 15% and the rise of molar ratio C2H4/C2H6 from 0.2 to 1 are observed when impregnation or mixture slurry method are used for catalyst preparation instead of POSS nanotechnology method.</p