39 research outputs found

    Almost Hermitian Geometry on Six Dimensional Nilmanifolds

    Get PDF
    The fundamental 2-form of an invariant almost Hermitian structure on a 6-dimensional Lie group is described in terms of an action by SO(4)xU(1) on complex projective 3-space. This leads to a combinatorial description of the classes of almost Hermitian structures on the Iwasawa and other nilmanifolds.Comment: 22 pages, 2 figure

    Toric moment mappings and Riemannian structures

    Full text link
    Coadjoint orbits for the group SO(6) parametrize Riemannian G-reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian structures on the Iwasawa manifold.Comment: 25 pages, 14 figures; Geometriae Dedicata 2012, Toric moment mappings and Riemannian structures, available at http://www.springerlink.com/content/yn86k22mv18p8ku2

    Supersymmetric AdS(4) compactifications of IIA supergravity

    Full text link
    We derive necessary and sufficient conditions for N=1 compactifications of (massive) IIA supergravity to AdS(4) in the language of SU(3) structures. We find new solutions characterized by constant dilaton and nonzero fluxes for all form fields. All fluxes are given in terms of the geometrical data of the internal compact space. The latter is constrained to belong to a special class of half-flat manifolds.Comment: 24 pages, references adde

    Integral geometry of complex space forms

    Full text link
    We show how Alesker's theory of valuations on manifolds gives rise to an algebraic picture of the integral geometry of any Riemannian isotropic space. We then apply this method to give a thorough account of the integral geometry of the complex space forms, i.e. complex projective space, complex hyperbolic space and complex euclidean space. In particular, we compute the family of kinematic formulas for invariant valuations and invariant curvature measures in these spaces. In addition to new and more efficient framings of the tube formulas of Gray and the kinematic formulas of Shifrin, this approach yields a new formula expressing the volumes of the tubes about a totally real submanifold in terms of its intrinsic Riemannian structure. We also show by direct calculation that the Lipschitz-Killing valuations stabilize the subspace of invariant angular curvature measures, suggesting the possibility that a similar phenomenon holds for all Riemannian manifolds. We conclude with a number of open questions and conjectures.Comment: 68 pages; minor change

    Almost hermitian geometry on six dimensional nilmanifolds

    Full text link
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore