86 research outputs found
Distribution of Mutual Information
The mutual information of two random variables i and j with joint
probabilities t_ij is commonly used in learning Bayesian nets as well as in
many other fields. The chances t_ij are usually estimated by the empirical
sampling frequency n_ij/n leading to a point estimate I(n_ij/n) for the mutual
information. To answer questions like "is I(n_ij/n) consistent with zero?" or
"what is the probability that the true mutual information is much larger than
the point estimate?" one has to go beyond the point estimate. In the Bayesian
framework one can answer these questions by utilizing a (second order) prior
distribution p(t) comprising prior information about t. From the prior p(t) one
can compute the posterior p(t|n), from which the distribution p(I|n) of the
mutual information can be calculated. We derive reliable and quickly computable
approximations for p(I|n). We concentrate on the mean, variance, skewness, and
kurtosis, and non-informative priors. For the mean we also give an exact
expression. Numerical issues and the range of validity are discussed.Comment: 8 page
Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity
Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons
Accurately Estimating the State of a Geophysical System with Sparse Observations: Predicting the Weather
Utilizing the information in observations of a complex system to make
accurate predictions through a quantitative model when observations are
completed at time , requires an accurate estimate of the full state of the
model at time .
When the number of measurements at each observation time within the
observation window is larger than a sufficient minimum value , the
impediments in the estimation procedure are removed. As the number of available
observations is typically such that , additional information from
the observations must be presented to the model.
We show how, using the time delays of the measurements at each observation
time, one can augment the information transferred from the data to the model,
removing the impediments to accurate estimation and permitting dependable
prediction. We do this in a core geophysical fluid dynamics model, the shallow
water equations, at the heart of numerical weather prediction. The method is
quite general, however, and can be utilized in the analysis of a broad spectrum
of complex systems where measurements are sparse. When the model of the complex
system has errors, the method still enables accurate estimation of the state of
the model and thus evaluation of the model errors in a manner separated from
uncertainties in the data assimilation procedure
Measuring spike train synchrony
Estimating the degree of synchrony or reliability between two or more spike
trains is a frequent task in both experimental and computational neuroscience.
In recent years, many different methods have been proposed that typically
compare the timing of spikes on a certain time scale to be fixed beforehand.
Here, we propose the ISI-distance, a simple complementary approach that
extracts information from the interspike intervals by evaluating the ratio of
the instantaneous frequencies. The method is parameter free, time scale
independent and easy to visualize as illustrated by an application to real
neuronal spike trains obtained in vitro from rat slices. In a comparison with
existing approaches on spike trains extracted from a simulated Hindemarsh-Rose
network, the ISI-distance performs as well as the best time-scale-optimized
measure based on spike timing.Comment: 11 pages, 13 figures; v2: minor modifications; v3: minor
modifications, added link to webpage that includes the Matlab Source Code for
the method (http://inls.ucsd.edu/~kreuz/Source-Code/Spike-Sync.html
- …