7 research outputs found

    New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    No full text
    International audienceIn this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature

    Temperature dependence of the electrical resistivity and absolute thermoelectric power of amorphous metallic glass Ni33.3Zr66.7

    No full text
    International audienceElectron transport properties and thermal stability of Ni33.3Zr66.7 metallic glass (MG) have been studied using an original device for simultaneous measurements of electrical resistivity and absolute thermoelectric power (ATP) controlled by a LabView software written by one of us. The electrical resistivity and absolute thermoelectric power were measured simultaneously and very accurately over a temperature range from 25 to 400 °C with a nominal heating rate of 0.5 K min− 1. The electronic thermal conductivity was also determined using the Wiedemann–Franz law in the same temperature range. Due to its high efficiency, this technique is more and more used because it is characterized by a high sensitivity to detection of the phase transitions related to electronic transport, which is the aim of this study. Analysis of the temperature dependence of the resistivity and ATP of the Ni33.3Zr66.7 glassy ribbons proves the potential of this characterization method to study the thermal behavior of metallic glasses. The crystal structure and the morphology of Ni33.3Zr66.7 metallic glass in the as-quenched state and after heat treatments were studied using X-ray diffraction (XRD), and scanning electron microscope (SEM)
    corecore