6 research outputs found
Green synthesized extracts/Au complex of <i>Phyllospongia lamellosa</i>:unrevealing the anti-cancer and anti-bacterial potentialities, supported by metabolomics and molecular modeling
The anti-cancer and anti-bacterial potential of the Red Sea sponge Phyllospongia lamellosa in its bulk (crude extracts) and gold nanostructure (loaded on gold nanaoparticles) were investigated. Metabolomics analysis was conducted, and subsequently, molecular modeling studies were conducted to explore and anticipate the P. lamellosa secondary metabolites and their potential target for their various bioactivities. The chloroformic extract (CE) and ethyl acetate extract (EE) of the P. lamellosa predicted to include bioactive lipophilic and moderately polar metabolites, respectively, were used to synthesize gold nanoparticles (AuNPs). The prepared AuNPs were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–vis spectrophotometric analyses. The cytotoxic activities were tested against MCF-7, MDB-231, and MCF-10A. Moreover, the anti-bacterial, antifungal, and anti-biofilm activity were assessed. Definite classes of metabolites were identified in CE (terpenoids) and EE (brominated phenyl ethers and sulfated fatty amides). Molecular modeling involving docking and molecular dynamics identified Protein-tyrosine phosphatase 1B (PTP1B) as a potential target for the anti-cancer activities of terpenoids. Moreover, CE exhibited the most powerful activity against breast cancer cell lines, matching our molecular modeling study. On the other hand, only EE was demonstrated to possess powerful anti-bacterial and anti-biofilm activity against Escherichia coli. In conclusion, depending on their bioactive metabolites, P. lamellosa-derived extracts, after being loaded on AuNPs, could be considered anti-cancer, anti-bacterial, and anti-biofilm bioactive products. Future work should be completed to produce drug leads
The effect of ethanol on surface of semi-interpenetrating polymer network (IPN) polymer matrix of glass-fibre reinforced composite
Aim of the study:The aim of this laboratory study was to evaluate the effect of ethanol treatment on the surfaceroughness (Sa), nano-mechanical properties (NMP) and surface characterization of dentalfiber reinforcedcomposite (FRC) with semi-interpenetrating polymer network (IPN).Materials and methods:A total of 240 FRC specimens with bisphenol A-glycidyl methacrylate - triethyleneglycoldimethacrylate–Poly (methylmetahcrylate) (bis-GMA-TEGDMA-PMMA) IPN matrix system were light cured for40 s and divided into 2 groups (L and LH). The group LH was further post-cured by heat at 95 °C for 25 min. Thespecimens were exposed to 99.9%, 70% and 40% for 15, 30, 60 and 120 s respectively. The treated specimenswere evaluated for Sausing non-contact profilometer. NMP were determined using nanoindentation techniqueand chemical characterization was assessed by Fourier Transform-Infrared (FTIR) spectroscopic analyses.Scanning electron microscopic (SEM) images were made to evaluate the surface topographical changes.Results:Both the L and LH group showed changes in the Saand NMP after being treated by different con-centrations of ethanol and at different time interval. The highest Sawas observed with L-group (0.733μm)treated with 99.9% ethanol for 120 s. Specimens in LH-group treated with 99.9% ethanol for 120 s (1.91 GPa)demonstrated increased nano-hardness, and group treated with 40% ethanol for 120 s demonstrated increasedYoung's modulus of elasticity (22.90 GPa). FTIR analyses revealed changes in the intensity and bandwidth inboth the L and LH groups.Conclusion:The present study demonstrated that both light-cured and heat post-cured FRC were prone forethanol induced alteration in the surface roughness (Sa), nano-mechanical properties (NMP) and chemicalcharacterization. The interphase between the glassfibers and the organic matrix was affected by ethanol. Thechanges were considerably less in magnitude in the heat post-cured FRC specimens.</p
Chemical Composition of Tagetes patula Flowers Essential Oil and Hepato-Therapeutic Effect against Carbon Tetrachloride-Induced Toxicity (In-Vivo)
The liver is a crucial organ among body organs due to its wide functions, in particular, detoxification and metabolism. Exposure to detrimental chemicals or viral infections may provoke liver dysfunction and ultimately induce liver tissue damage. Finding natural substances for liver disease treatment to overcome the conventional treatments’ side effects has attracted the attention of researchers worldwide. Our current work was conducted to investigate the hepato-therapeutic activities of essential oil (EO) isolated from Tagetes patula flowers. EO was extracted using the hydro-distillation (HD) technique and its chemical composition was identified by GC/MS. Then, the hepatic treatment potential of extracted EO was evaluated in vivo against CCL4 in rats. HD of T. patula flowers yielded highly chemical constituents of EO along with significant antioxidant potential. A coherent molecular network was fashioned via the Global Natural Products Social Molecular Networking (GNPS) to visualize the essential components and revealed that the sesquiterpene (E)-β-caryophyllene was the most predominant volatile constituent which accounted for 24.1%. The treatment of CCL4 led to significant induced oxidative stress markers malonaldehyde, total protein, and non-protein sulfhydryl, as well as elevated serum aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, and bilirubin. In addition, it disrupted the level of lipid profile. The post-treatment using T. patula EO succeeded in relieving all toxic effects of CCl4 and recuperating the histopathological signs induced by CCL4. Silymarin was used as a standard hepatoprotective agent. The obtained results demonstrated that the extracted EO exerted high protective activities against the toxicity of CCL4. Moreover, the T. patula flowers EO can be used as a natural remedy to relieve many contemporary liver diseases related to oxidative stress
Phytochemical Profiling, In Vitro Biological Activities, and In-Silico Studies of Ficus vasta Forssk.: An Unexplored Plant
Ficus vasta Forssk. (Moraceae family) is an important medicinal plant that has not been previously investigated for its phytochemical and biological potential. Phytochemical screening, total bioactive content, and GCMS analysis were used to determine its phytoconstituents profile. Antioxidant, antibacterial, antifungal, anti-viral, cytotoxicity, thrombolytic, and enzyme inhibition activities were examined for biological evaluation. The plant extract exhibited the maximum total phenolic (89.47 ± 3.21 mg GAE/g) and total flavonoid contents (129.2 ± 4.14 mg QE/g), which may be related to the higher antioxidant potential of the extract. The extract showed strong α-amylase (IC50 5 ± 0.21 µg/mL) and α-glucosidase inhibition activity (IC50 5 ± 0.32 µg/mL). Significant results were observed in the case of antibacterial, antifungal, and anti-viral activities. The F. vasta extract inhibited the growth of HepG2 cells in a dose-dependent manner. The GCMS analysis of the extract provided the preliminary identification of 28 phytocompounds. In addition, the compounds identified by GCMS were subjected to in silico molecular docking analysis in order to identify any interactions between the compounds and enzymes (α-amylase and α-glucosidase). After that, the best-docked compounds were subjected to ADMET studies which provide information on pharmacokinetics, drug-likeness, physicochemical properties, and toxicity. The present study highlighted that the ethanol extract of F. vasta has antidiabetic, antimicrobial, anti-viral, and anti-cancer potentials that can be further explored for novel drug development
Phytochemical, Antimicrobial, Antidiabetic, Thrombolytic, anticancer Activities, and in silico studies of Ficus palmata Forssk
Ficus palmata Forssk. (Moraceae family) is medicinally valuable plant that is mostly used as folk medicine for the treatment of different diseases. Phytochemical composition was evaluated by preliminary phytochemical investigation, GCMS analysis, and total bioactive contents (TPC and TFC). The antioxidant, enzyme inhibition, antimicrobial, thrombolytic and anticancer activities were performed for biological evaluation. The extract exhibited the maximum total phenolic (49.24 ± 1.21 mg GAE/g) and total flavonoid contents (29.9 ± 1.13 mg QE/g) which may be correlated to higher antioxidant potential of extract. The GCMS investigation identified the presence of 27 phytocompounds of different classes related to aldehydes, esters of fatty acids, triterpenes, steroids, triterpenoid. The extract possessed the strong α-glucosidase (73.4 ± 4.65 %) and moderate α-amylase inhibition activity (47.1 ± 3.29 %). Significant results were observed in case of antiviral, antifungal, and antibacterial activities. F. palmata extract inhibited the growth of HepG2 cancer cells in a dose-dependent manner. The extract also exhibited moderate in vitro thrombolytic activity. In addition, the phytocompounds identified by GCMS were subjected to in silico molecular docking studies to analyze the binding affinity between phytocompounds and enzymes (α-glucosidase and α-amylase). Moreover, the best docked compounds were selected for ADMET studies which provide information about pharmacokinetics, physicochemical properties, drug-likeness, and toxicity of identified phytocompounds. The outcome of our research revealed that ethanolic extract of F. palmata possessed good antidiabetic, antimicrobial, thrombolytic and anticancer potential. This plant should be further explored to isolate the bioactive compounds for new drug development
The effect of ethanol on surface of semi-interpenetrating polymer network (IPN) polymer matrix of glass-fibre reinforced composite
Aim of the study: The aim of this laboratory study was to evaluate the effect of ethanol treatment on the surface roughness (Sa), nano-mechanical properties (NMP) and surface characterization of dental fiber reinforced composite (FRC) with semi-interpenetrating polymer network (IPN).Materials and methods: A total of 240 FRC specimens with bisphenol A-glycidyl methacrylate - triethyleneglycol dimethacrylate - Poly (methylmetahcrylate) (bis-GMA-TEGDMA-PMMA) IPN matrix system were light cured for 40 s and divided into 2 groups (L and LH). The group LH was further post-cured by heat at 95 °C for 25 min. The specimens were exposed to 99.9%, 70% and 40% for 15, 30, 60 and 120 s respectively. The treated specimens were evaluated for Sa using non-contact profilometer. NMP were determined using nanoindentation technique and chemical characterization was assessed by Fourier Transform-Infrared (FTIR) spectroscopic analyses. Scanning electron microscopic (SEM) images were made to evaluate the surface topographical changes.Results: Both the L and LH group showed changes in the Sa and NMP after being treated by different concentrations of ethanol and at different time interval. The highest Sa was observed with L-group (0.733 μm) treated with 99.9% ethanol for 120 s. Specimens in LH-group treated with 99.9% ethanol for 120 s (1.91 GPa) demonstrated increased nano-hardness, and group treated with 40% ethanol for 120 s demonstrated increased Young's modulus of elasticity (22.90 GPa). FTIR analyses revealed changes in the intensity and bandwidth in both the L and LH groups.Conclusion: The present study demonstrated that both light-cured and heat post-cured FRC were prone for ethanol induced alteration in the surface roughness (Sa), nano-mechanical properties (NMP) and chemical characterization. The interphase between the glass fibers and the organic matrix was affected by ethanol. The changes were considerably less in magnitude in the heat post-cured FRC specimens.</p