130 research outputs found
Quantum Gravity coupled to Matter via Noncommutative Geometry
We show that the principal part of the Dirac Hamiltonian in 3+1 dimensions
emerges in a semi-classical approximation from a construction which encodes the
kinematics of quantum gravity. The construction is a spectral triple over a
configuration space of connections. It involves an algebra of holonomy loops
represented as bounded operators on a separable Hilbert space and a Dirac type
operator. Semi-classical states, which involve an averaging over points at
which the product between loops is defined, are constructed and it is shown
that the Dirac Hamiltonian emerges as the expectation value of the Dirac type
operator on these states in a semi-classical approximation.Comment: 15 pages, 1 figur
On Semi-Classical States of Quantum Gravity and Noncommutative Geometry
We construct normalizable, semi-classical states for the previously proposed
model of quantum gravity which is formulated as a spectral triple over holonomy
loops. The semi-classical limit of the spectral triple gives the Dirac
Hamiltonian in 3+1 dimensions. Also, time-independent lapse and shift fields
emerge from the semi-classical states. Our analysis shows that the model might
contain fermionic matter degrees of freedom.
The semi-classical analysis presented in this paper does away with most of
the ambiguities found in the initial semi-finite spectral triple construction.
The cubic lattices play the role of a coordinate system and a divergent
sequence of free parameters found in the Dirac type operator is identified as a
certain inverse infinitesimal volume element.Comment: 31 pages, 10 figure
- …