95 research outputs found
Bilateral Optic Neuritis Associated with the Use of Infliximab
A 40 year old man was admitted with a 2 weeks history of headache, blurred vision and bilateral optic neuritis. During the 6 months period prior to admission he had treated with infliximab infusions for prsoriasis arthritis. He had 0.2 vision in right eye and 0.5 in left Fundoscopy showed moderate disc swelling more on the right than on the left side and right-sided splinter heamorrhages at the disc margin. The intracranial pressure was normal. He was treated with oral methylprednisolone, 100 mg daily for 1 week. His vision improved gradually and when seen 10 weeks later his visual acuity was 1.0 in both eyes and he had normal visual fields. Optic neuritis is a rare but well recognized serious adverse effect of treatments with tumor necrosis factor (TNF) antagonists. This case report illustrates a rare but typical side effect of a TNF alpha inhibitors used for treating a number of inflammatory diseases. These reactions usually appear during first year of treatments and never after the first one or two infusions. Both genders and all ages are affected. In some patients the visual defects are irreversible
Metabolomic Profiling in LRRK2-Related Parkinson's Disease
Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson's disease (PD).We used metabolomic profiling to identify biomarkers that are associated with idiopathic and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2 PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic. Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major metabolites of the purine pathway in plasma of PD patients.These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in PD which may occur upstream from uric acid
Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study
<p>Abstract</p> <p>Background</p> <p>A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near <it>MS4A4A, CD2AP, EPHA1 </it>and <it>CD33</it>. Meta-analyses of this and a previously published GWAS revealed significant association at <it>ABCA7 </it>and <it>MS4A</it>, independent evidence for association of <it>CD2AP, CD33 </it>and <it>EPHA1 </it>and an opposing yet significant association of a variant near <it>ARID5B</it>. In this study, we genotyped five variants (in or near <it>CD2AP, EPHA1, ARID5B</it>, and <it>CD33</it>) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and <it>APOE ε4 </it>dosage.</p> <p>Results</p> <p>We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for <it>EPHA1 </it>(rs11767557; OR = 0.87, p = 5 × 10<sup>-4</sup>) and <it>CD33 </it>(rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two <it>ARID5B </it>variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the <it>CD2AP </it>variant (rs9349407, p = 0.56).</p> <p>Conclusions</p> <p>Our data overwhelmingly support the association of <it>EPHA1 </it>and <it>CD33 </it>variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10<sup>-15 </sup>(<it>EPHA1</it>) and 1.8 × 10<sup>-13 </sup>(<it>CD33</it>).</p
LRRTM3 Interacts with APP and BACE1 and Has Variants Associating with Late-Onset Alzheimer's Disease (LOAD)
Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer’s disease (LOAD) risk and plasma amyloid β (Aβ) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aβ, although the mechanism of this is unclear. In SH-SY5Y cells overexpressing APP and transiently transfected with LRRTM3 alone or with BACE1, we showed that LRRTM3 co-localizes with both APP and BACE1 in early endosomes, where BACE1 processing of APP occurs. Additionally, LRRTM3 co-localizes with APP in primary neuronal cultures from Tg2576 mice transduced with LRRTM3-expressing adeno-associated virus. Moreover, LRRTM3 co-immunoprecipitates with both endogenous APP and overexpressed BACE1, in HEK293T cells transfected with LRRTM3. SH-SY5Y cells with knock-down of LRRTM3 had lower BACE1 and higher CTNNA3 mRNA levels, but no change in APP. Brain mRNA levels of LRRTM3 showed significant correlations with BACE1, CTNNA3 and APP in ∼400 humans, but not in LRRTM3 knock-out mice. Finally, we assessed 69 single nucleotide polymorphisms (SNPs) within and flanking LRRTM3 in 1,567 LOADs and 2,082 controls and identified 8 SNPs within a linkage disequilibrium block encompassing 5′UTR-Intron 1 of LRRTM3 that formed multilocus genotypes (MLG) with suggestive global association with LOAD risk (p = 0.06), and significant individual MLGs. These 8 SNPs were genotyped in an independent series (1,258 LOADs and 718 controls) and had significant global and individual MLG associations in the combined dataset (p = 0.02–0.05). Collectively, these results suggest that protein interactions between LRRTM3, APP and BACE1, as well as complex associations between mRNA levels of LRRTM3, CTNNA3, APP and BACE1 in humans might influence APP metabolism and ultimately risk of AD.© 2013 Lincoln et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility
Background
Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology.
Results
Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01).
Conclusions
Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology
Inflammatory profile in LRRK2-associated prodromal and clinical PD
BACKGROUND There is evidence for a relevant role of inflammation in the pathogenesis of Parkinson's disease (PD). Mutations in the LRRK2 gene represent the most frequent genetic cause for autosomal dominant PD. LRRK2 is highly expressed in macrophages and microglia suggesting an involvement in inflammatory pathways. The objectives are to test (1) whether idiopathic PD and LRRK2-associated PD share common inflammatory pathways or present distinct profiles and (2) whether non-manifesting LRRK2 mutation carriers present with similar aspects of inflammatory profiles as seen in PD-affected patients. METHODS We assessed serum profiles of 23 immune-associated markers and the brain-derived neurotrophic factor in 534 individuals from the MJFF LRRK2 consortium. RESULTS A large proportion of inflammatory markers were gender-dependent. Both PD-affected cohorts showed increased levels of the pro-inflammatory marker fatty-acid-binding protein. Additionally, idiopathic PD but not LRRK2-associated PD patients showed increased levels of the pro-inflammatory marker interleukin-12-p40 as well as the anti-inflammatory species interleukin-10, brain-derived neurotrophic factor, and stem cell factor. Non-manifesting LRRK2 mutation carriers including those with prodromal characteristics of PD presented with control-like inflammatory profiles. CONCLUSIONS Concomitant inflammation seems to be associated with idiopathic and LRRK2-associated PD. Identifying PD patients in whom inflammatory processes play a major role in their pathophysiology might offer a new therapeutic window at least for a subgroup of patients. Since non-manifesting LRRK2 mutation carriers with symptoms of the prodromal phase of PD did not show inflammatory profiles, activation of the immune system seems not an early event in the disease cascade
APOE ε4 lowers age at onset and is a high risk factor for Alzheimer's disease; A case control study from central Norway
<p>Abstract</p> <p>Background</p> <p>The objective of this study was to analyze factors influencing the risk and timing of Alzheimer's disease (AD) in central Norway. The <it>APOE </it>ε4 allele is the only consistently identified risk factor for late onset Alzheimer's disease (LOAD). We have described the allele frequencies of the apolipoprotein E gene (<it>APOE</it>) in a large population of patients with AD compared to the frequencies in a cognitively-normal control group, and estimated the effect of the <it>APOE </it>ε4 allele on the risk and the age at onset of AD in this population.</p> <p>Methods</p> <p>376 patients diagnosed with AD and 561 cognitively-normal control individuals with no known first degree relatives with dementia were genotyped for the <it>APOE </it>alleles. Allele frequencies and genotypes in patients and control individuals were compared. Odds Ratio for developing AD in different genotypes was calculated.</p> <p>Results</p> <p>Odds Ratio (OR) for developing AD was significantly increased in carriers of the <it>APOE </it>ε4 allele compared to individuals with the <it>APOE </it>ε3/ε3 genotype. Individuals carrying <it>APOE </it>ε4/ε4 had OR of 12.9 for developing AD, while carriers of <it>APOE </it>ε2/ε4 and <it>APOE </it>ε3/ε4 had OR of 3.2 and 4.2 respectively. The effect of the <it>APOE </it>ε4 allele was weaker with increasing age. Carrying the <it>APOE </it>ε2 allele showed no significant protective effect against AD and did not influence age at onset of the disease. Onset in LOAD patients was significantly reduced in a dose dependent manner from 78.4 years in patients without the <it>APOE </it>ε4 allele, to 75.3 in carriers of one <it>APOE </it>ε4 allele and 72.9 in carriers of two <it>APOE </it>ε4 alleles. Age at onset in early onset AD (EOAD) was not influenced by <it>APOE </it>ε4 alleles.</p> <p>Conclusion</p> <p><it>APOE </it>ε4 is a very strong risk factor for AD in the population of central Norway, and lowers age at onset of LOAD significantly.</p
Large-scale assessment of polyglutamine repeat expansions in Parkinson disease
Objectives: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). Methods: We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. Results: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. Conclusions: Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD
Evaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study
A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed interaction between LRRK2 and PARK16 variants in modifying PD risk using a large multicenter series of PD patients (7715) and controls (8261) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Our data does not support a strong direct interaction between LRRK2 and PARK16 variants; however, given the role of retromer and lysosomal pathways in PD, further studies are warranted
- …