2 research outputs found

    Structural basis of specific H2A K13/K15 ubiquitination by RNF168

    No full text
    Ubiquitination of chromatin by modification of histone H2A is a critical step in both regulation of DNA repair and regulation of cell fate. These very different outcomes depend on the selective modification of distinct lysine residues in H2A, each by a specific E3 ligase. While polycomb PRC1 complexes modify K119, resulting in gene silencing, the E3 ligase RNF168 modifies K13/15, which is a key event in the response to DNA double-strand breaks. The molecular origin of ubiquitination site specificity by these related E3 enzymes is one of the open questions in the field. Using a combination of NMR spectroscopy, crosslinking mass-spectrometry, mutagenesis and data-driven modelling, here we show that RNF168 binds the acidic patch on the nucleosome surface, directing the E2 to the target lysine. The structural model highlights the role of E3 and nucleosome in promoting ubiquitination and provides a basis for understanding and engineering of chromatin ubiquitination specificity

    Structural basis of specific H2A K13/K15 ubiquitination by RNF168

    No full text
    Ubiquitination of histone H2A can occur on distinct lysine residues, but how each site is recognised by the specific E3 ligase remains poorly understood. Here the authors demonstrate that the E3 ligase RNF168 binds the acidic patch on the nucleosome surface, directing the E2 to the target lysine K13/K15
    corecore