3,276 research outputs found

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    Spectral analysis and an area-preserving extension of a piecewise linear intermittent map

    Full text link
    We investigate spectral properties of a 1-dimensional piecewise linear intermittent map, which has not only a marginal fixed point but also a singular structure suppressing injections of the orbits into neighborhoods of the marginal fixed point. We explicitly derive generalized eigenvalues and eigenfunctions of the Frobenius--Perron operator of the map for classes of observables and piecewise constant initial densities, and it is found that the Frobenius--Perron operator has two simple real eigenvalues 1 and λd∈(−1,0)\lambda_d \in (-1,0), and a continuous spectrum on the real line [0,1][0,1]. From these spectral properties, we also found that this system exhibits power law decay of correlations. This analytical result is found to be in a good agreement with numerical simulations. Moreover, the system can be extended to an area-preserving invertible map defined on the unit square. This extended system is similar to the baker transformation, but does not satisfy hyperbolicity. A relation between this area-preserving map and a billiard system is also discussed.Comment: 12 pages, 3 figure

    Adversary lower bounds for nonadaptive quantum algorithms

    Get PDF
    International audienceWe present general methods for proving lower bounds on the query complexity of nonadaptive quantum algorithms. Our results are based on the adversary method of Ambainis

    TPQ3: EUROPEAN GUIDANCE DOCUMENT FOR THE IMPROVEMENT OF THE INTEGRATION OF HEALTH-RELATED QUALITY OF LIFE (HRQL) ASSESSMENT IN THE DRUG REGULATORY PROCESS

    Get PDF

    Quantum Walks, Quantum Gates and Quantum Computers

    Get PDF
    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both a single- and multi-excitation coding, and for more general mappings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included.Comment: 17 pages, 10 figure

    Quantum Algorithm for Molecular Properties and Geometry Optimization

    Get PDF
    It is known that quantum computers, if available, would allow an exponential decrease in the computational cost of quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton's method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.Comment: 6 page

    Optical quantum computing with photons of arbitrarily low fidelity and purity

    Full text link
    Linear optics quantum computing (LOQC) is a leading candidate for the implementation of large scale quantum computers. Here quantum information is encoded into the quantum states of light and computation proceeds via a linear optics network. It is well known that in such schemes there are stringent requirements on the spatio-temporal structure of photons -- they must be completely indistinguishable and of very high purity. We show that in the Boson-sampling model for LOQC these conditions may be significantly relaxed. We present evidence that by increasing the size of the system we can implement a computationally hard algorithm even if our photons have arbitrarily low fidelity and purity. These relaxed conditions make Boson-sampling LOQC within reach of present-day technology.Comment: Version submitted to Phys. Rev.

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure

    On conformal measures and harmonic functions for group extensions

    Full text link
    We prove a Perron-Frobenius-Ruelle theorem for group extensions of topological Markov chains based on a construction of σ\sigma-finite conformal measures and give applications to the construction of harmonic functions.Comment: To appear in Proceedings of "New Trends in Onedimensional Dynamics, celebrating the 70th birthday of Welington de Melo
    • …
    corecore