6 research outputs found
Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer.
Exploration of new strategies for the prevention of breast cancer metastasis is justifiably at the center of clinical attention. In this study, we combined a computational biology approach with mechanism-based preclinical trials to identify inhibitors of activin-like receptor kinase (ALK) 1 as effective agents for blocking angiogenesis and metastasis in breast cancer. Pharmacologic targeting of ALK1 provided long-term therapeutic benefit in mouse models of mammary carcinoma, accompanied by strikingly reduced metastatic colonization as a monotherapy or part of combinations with chemotherapy. Gene-expression analysis of breast cancer specimens from a population-based nested case-control study encompassing 768 subjects defined endothelial expression of ALK1 as an independent and highly specific prognostic factor for metastatic manifestation, a finding that was corroborated in an independent clinical cohort. Overall, our results suggest that pharmacologic inhibition of endothelial ALK1 constitutes a tractable strategy for interfering with metastatic dissemination of breast cancer. Cancer Res; 75(12); 2445-56. ©2015 AACR
Non-affinity factors modulating vascular targeting of nano- and microcarriers
Particles capable of homing and adhering to specific vascular biomarkers have potential as fundamental tools in drug delivery for mediation of a wide variety of pathologies, including inflammation, thrombosis, and pulmonary disorders. The presentation of affinity ligands on the surface of a particle provides a means of targeting the particle to sites of therapeutic interest, but a host of other factors come into play in determining the targeting capacity of the particle. This review presents a summary of several key considerations in nano- and microparticle design that modulate targeted delivery without directly altering epitope-specific affinity. Namely, we describe the effect of factors in definition of the base carrier (including shape, size, and flexibility) on the capacity of carriers to access, adhere to, and integrate in target biological milieus. Furthermore, we present a summary of fundamental dynamics of carrier behavior in circulation, taking into account interactions with cells in circulation and the role of hemodynamics in mediating the direction of carriers to target sites. Finally, we note non-affinity aspects to uptake and intracellular trafficking of carriers in target cells. In total, recent findings presented here may offer an opportunity to capitalize on mitigating factors in the behavior of ligand-targeted carriers in order to optimize targeting