6 research outputs found
First Direct Detection Limits on sub-GeV Dark Matter from XENON10
The first direct detection limits on dark matter in the MeV to GeV mass range
are presented, using XENON10 data. Such light dark matter can scatter with
electrons, causing ionization of atoms in a detector target material and
leading to single- or few-electron events. We use 15 kg-days of data acquired
in 2006 to set limits on the dark-matter-electron scattering cross section. The
strongest bound is obtained at 100 MeV where sigma_e < 3 x 10^{-38} cm^2 at 90%
CL, while dark matter masses between 20 MeV and 1 GeV are bounded by sigma_e <
10^{-37} cm^2 at 90% CL. This analysis provides a first proof-of-principle that
direct detection experiments can be sensitive to dark matter candidates with
masses well below the GeV scale.Comment: Submitted to PR
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years