13 research outputs found
Design and experimental results of small-scale rotary engines
ABSTRACT A research project is currently underway to develop small-scale internal combustion engines fueled by liquid hydrocarbons. The ultimate goal of the MEMS Rotary Internal Combustion Engine Project is to develop a liquid hydrocarbon fueled MEMS-size rotary internal combustion micro-engine capable of delivering power on the order of milli-watts. This research is part of a larger effort to develop a portable, autonomous power generation system with an order of magnitude improvement in energy density over alkaline or lithium-ion batteries. The rotary (Wankel-type) engine is well suited for the fabrication techniques developed in the integrated chip (IC) community and refined by the MicroElectroMechanical Systems (MEMS) field. Features of the rotary engine that lend itself to MEMS fabrication are its planar construction, high specific power, and self-valving operation. The project aims at developing a "micro-rotary" engine with an 3 epitrochoidal-shaped housing under 1 mm in size and with a rotor swept volume of 0.08 mm 3. To investigate engine behavior and design issues, larger-scale "mini-rotary" engines have been fabricated from steel. Mini-rotary engine chambers are approximately 1000 mm 3 to 1700 mm 3 in size and their displacements range from 78 mm 3 to 348 mm 3. A test bench for the mini-rotary engine has been developed and experiments have been conducted with gaseous-fueled mini-rotary engines to examine the effects of sealing, ignition, design, and thermal management on efficiency. Preliminary testing has shown net power output of up to 2.7 W at 9300 RPM. Testing has been performed using hydrogen-air mixtures and a range of spark and glow plug designs as the ignition source. Iterative design and testing of the miniengine has lead to improved sealing designs. These particular designs are such that they can be incorporated into the fabrication of the micro-engine. Design and fabrication of a first generation meso-scale rotary engine has been completed using a SiC molding process developed at Case Western Reserve University. The fabrication of the micro-rotary engine is being conducted in U.C. Berkeley's Microfabrication Laboratory. Testing of the mini-engine has lead to the conclusion that there are no fundamental phenomena that would prevent the operation of the micro-engine. However, heat loss and sealing issues are key for efficient operation of the micro-engine, and they must be taken into account in the design and fabrication of the micro-rotary engine. The mini-rotary engine design, testing, results and applications will be discussed in this paper
IMECE2001/MEMS-23925 DESIGN AND FABRICATION OF A SILICON-BASED MEMS ROTARY ENGINE
Design and fabrication of a Silicon-based MEMS rotary engine are discussed in this paper. This work is part of an effort currently underway to develop a portable, autonomous power generation system potentially capable of having an order of magnitude improvement in energy density over alkaline or lithium-ion batteries. Central to the development of this power generation system are small-scale rotary internal combustion engines fueled by high energy density liquid hydrocarbons capable of delivering power on the order of milli-Watts. The rotary (Wankei-type) engine is well suited for MEMS fabrication due to its planar geometry, high specific power, and self-valving operation with a minimal number of moving parts. The smallest "micro-rotary " engine currently being fabricated has an epitrochoidalshaped housing under 1 mm 3 in size and with a rotor swept volume of 0.08 mm 3