3 research outputs found

    Design Method and Cost-Benefit Analysis of Hybrid Fiber Used in Asphalt Concrete

    Get PDF
    Fiber, as an additive, can improve the performance of asphalt concrete and be widely studied, but only a few works have been done for hybrid fiber. This paper presents a new and convenient method to design hybrid fiber and verifies hybrid fiber’s superiority in asphalt pavement engineering. Firstly, this paper expounds the design method used as its applied example with the hybrid fiber composed of lignin, polyester, and polypropylene fibers. In this method, a direct shear device (DSD) is used to measure the shear damage energy density (SDED) of hybrid fiber modified asphalts, and range and variance statistical analysis are applied to determine the composition proportion of hybrid fiber. Then, the engineering property of hybrid fiber reinforced asphalt concrete (AC-13) is investigated. Finally, a cost-benefit model is developed to analyze the advantage of hybrid fiber compared to single fibers. The results show that the design method employed in this paper can offer a beneficial reference. A combination of 1.8% of lignin fiber and 2.4% of polyester fiber plus 3.0% polypropylene fiber presented the best reinforcement of the hybrid fiber. The cost-benefit model verifies that the hybrid fiber can bring about comprehensive pavement performance and good economy

    Impact of Dual Gauge Railway Tracks on Traffic Load Induced Permanent Deformation of Low Embankments

    Get PDF
    AbstractThere is a growing interest in recent years of many African countries to revamp their neglected railways in order to promote regional trade and transportation integration. Investors are faced with problems of railway track gauge conversions to promote railway inter operability. The objective of the work documented here was to numerically evaluate the impact of track gauge conversions on traffic load induced permanent deformation (PD) of low embankment on soft sub-grade. A method to predict the traffic load induced settlement of low embankment on soft sub-grade is proposed. Using the user-defined material subroutines (UMAT) in ABAQUS, a 2-D finite element (FE) model was formulated. These models are converted into a numerical formulation for implementation in FE analysis and the traffic load induced dynamic stress in the sub grade are calculated by using the multi-layer elastic theory. Then the plastic vertical strain in the sub-grade is calculated by an empirical equation, whose constants are related to the physical and mechanical properties of the sub-grade soil. The method was applied to analyze a 700m long section of a low embankment on the soft black cotton soil of Nakuru plains in Kenya. Corresponding results showed that the application of traffic loads on alternate rail tracks due to gauge conversions have a significant effect on the permanent deformation of the sub grade soil. The depth significantly influenced by traffic loading was found to be close to 6 m below the base of the embankment. The analysis also shows that increasing the thickness and stiffness of the sub grade is a very effective way of reducing the traffic load induced permanent deformation of soft sub grade soil. The proposed method can be used for settlement analysis on low embankments as well as a useful tool for making decisions on railway track gauge conversions

    Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma

    Get PDF
    To estimate the floor of retinal nerve fibre layer (RNFL) thickness measurements and the corresponding retinal sensitivity loss in glaucoma
    corecore