312 research outputs found
Vertical Carbon Nanotube Devices With Nanoscale Lengths Controlled Without Lithography
Vertical single-walled carbon nanotubes (vSWCNTs) are synthesized within highly ordered porous anodic alumina (PAA) templates supported on Si substrates. A process for obtaining thin-film PAA with long-range ordered nanopores is presented in this paper. Each nanopore contains at most one v-SWCNT that is supported by a dielectric and addressed by electrochemically formed Pd nanowire source contacts and evaporated Pd drain contacts. Characteristics of these completely vertical, two-terminal nanotube devices are presented. Control of the v-SWCNT length is demonstrated using a straightforward etching process with lengths of less than 100 nm achieved without the need for complex/expensive lithography. This effective nanoscale length control of highly ordered v-SWCNTs provides a practical basis for the realization of CNT-based nanoelectronics
Flexible, Print-in-Place 1D-2D Thin-Film Transistors Using Aerosol Jet Printing
In this work, we overcome temperature constraints and demonstrate 1D−2D thin-film transistors (1D−2D TFTs) in a low-temperature (maximum exposure ≤80 °C) full print-in-place process (i.e., no substrate removal from printer throughout
the entire process) using an aerosol jet printer. Semiconducting 1D CNT channels are used with a 2D hexagonal boron
nitride (h-BN) gate dielectric and traces of silver nanowires as the conductive electrodes, all deposited using the same
printer. The aerosol jet-printed 2D h-BN films were realized via proper ink formulation, such as utilizing the binder
hydroxypropyl methylcellulose, which suppresses redispersion between adjacent printed layers. In addition to an ON/
OFF current ratio up to 3.5 Å~ 105, channel mobility up to 10.7 cm2·V-1·s-1, and low gate hysteresis, 1D−2D TFTs exhibit
extraordinary mechanical stability under bending due to the nanoscale network structure of each layer, with minimal
changes in performance after 1000 bending test cycles at 2.1% strain. It is also confirmed that none of the device layers
require high-temperature treatment to realize optimal performance. These findings provide an attractive approach toward
a cost-effective, direct-write realization of electronics
Recommended from our members
Photoreversible interconversion of a phytochrome photosensory module in the crystalline state.
A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Ã… resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion
High-Performance Air-Stable n-Type Carbon Nanotube Transistors with Erbium Contacts
O ver the past few decades, the continued down-scaling of the physical dimensions of silicon field-effect transistors (FETs) has been the main drive for achieving higher device density while improving the transistor performance in complementary metalÀoxideÀ semiconductor (CMOS) circuits. One of the principle benefits of the conventional scaling trend, namely, reducing the power consumption per computation, has diminished in recent years. In particular, power management is increasingly becoming a major challenge because of the inability to further decrease the operating voltage without compromising the performance of silicon FETs. Incorporation of alternative channel materials with superior carrier transport properties, as presently conceived, is a favorable strategy for the semiconductor industry to complement or replace silicon FETs. Among the promising candidates, carbon nanotubes (CNTs) are predicted to offer the most energy-efficient solution for computation compared with other channel materials, 1 owing to their unique properties such as ultrathin body and ballistic carrier transport in the channel. ABSTRACT So far, realization of reproducible n-type carbon nanotube (CNT) transistors suitable for integrated digital applications has been a difficult task. In this work, hundreds of n-type CNT transistors from three different low work function metals ; erbium, lanthanum, and yttrium ; are studied and benchmarked against p-type devices with palladium contacts. The crucial role of metal type and deposition conditions is elucidated with respect to overall yield and performance of the n-type devices. It is found that high oxidation rates and sensitivity to deposition conditions are the major causes for the lower yield and large variation in performance of n-type CNT devices with low work function metal contacts. Considerable improvement in device yield is attained using erbium contacts evaporated at high deposition rates. Furthermore, the air-stability of our n-type transistors is studied in light of the extreme sensitivity of these metals to oxidation
The Berkeley Sample of Stripped-Envelope Supernovae
We present the complete sample of stripped-envelope supernova (SN) spectra
observed by the Lick Observatory Supernova Search (LOSS) collaboration over the
last three decades: 888 spectra of 302 SNe, 652 published here for the first
time, with 384 spectra (of 92 SNe) having photometrically-determined phases.
After correcting for redshift and Milky Way dust reddening and reevaluating the
spectroscopic classifications for each SN, we construct mean spectra of the
three major spectral subtypes (Types IIb, Ib, and Ic) binned by phase. We
compare measures of line strengths and widths made from this sample to the
results of previous efforts, confirming that O I {\lambda}7774 absorption is
stronger and found at higher velocity in Type Ic SNe than in Types Ib or IIb
SNe in the first 30 days after peak brightness, though the widths of nebular
emission lines are consistent across subtypes. We also highlight newly
available observations for a few rare subpopulations of interest.Comment: 13 pages; 14 figures; 3 tables. Accepted for publication in MNRA
WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy
Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependences of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarization correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the lowfrequency Square Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released
Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio
- …