6 research outputs found

    Conjugate Gradient MIMO Iterative Learning Control Using Data-Driven Stochastic Gradients

    No full text
    Data-driven iterative learning control can achieve high performance for systems performing repeating tasks without the need for modeling. The aim of this paper is to develop a fast data-driven method for iterative learning control that is suitable for massive MIMO systems through the use of efficient unbiased gradient estimates. A stochastic conjugate gradient descent algorithm is developed that uses dedicated experiments to determine the conjugate search direction and optimal step size at each iteration. The approach is illustrated on a multivariable example, and it is shown that the method is superior to both the earlier stochastic gradient descent and deterministic conjugate gradient descent methods. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Jan-Willem van Wingerde

    A design framework for nonlinear iterative learning control and repetitive control: Applied to three mechatronic case studies

    No full text
    Iterative learning control (ILC) and repetitive control (RC) can lead to high performance by attenuating repeating disturbances perfectly, yet these approaches may amplify non-repeating disturbances. The aim of this paper is to achieve both perfect, fast attenuation of repeating disturbances and limited amplification of non-repeating disturbances. This is achieved by including a deadzone nonlinearity in the learning filter, which distinguishes disturbances based on their different amplitudes to apply different learning gains. Convergence conditions for nonlinear ILC and RC are developed, which are used in combination with system measurements in a comprehensive design procedure. Experimental implementation demonstrates fast learning and small errors.Team Jan-Willem van Wingerde

    Compensating commutation-angle domain disturbances with application to waveform optimization for piezo stepper actuators

    Get PDF
    Piezo stepper actuators are very promising for nanopositioning systems due to their high resolution, high stiffness, fast response, and the ability to position a mover over an infinite stroke by means of motion reminiscent of walking. The aim of this paper is to enhance the waveforms for actuating piezo steppers, by actively compensating for repetitive disturbances that are introduced by the walking behavior. A compensation method is developed to compensate for disturbances in the stepping domain, since disturbances may vary in the time domain if the velocity changes. The results from this procedure are exploited to determine an optimal waveform for the working range of the actuator. A significant improvement in performance is achieved after applying this waveform to a piezo stepper actuator.Team Jan-Willem van Wingerde

    Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer

    No full text
    The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.Team Jan-Willem van Wingerde

    Cross-Coupled Iterative Learning Control for Complex Systems: A Monotonically Convergent and Computationally Efficient Approach

    No full text
    Cross-coupled iterative learning control (ILC) can achieve high performance for manufacturing applications in which tracking a contour is essential for the quality of a product. The aim of this paper is to develop a framework for norm-optimal cross-coupled ILC that enables the use of exact contour errors that are calculated offline, and iteration-and time-varying weights. Conditions for the monotonic convergence of this iteration-varying ILC algorithm are developed. In addition, a resource-efficient implementation is proposed in which the ILC update law is reframed as a linear quadratic tracking problem, reducing the computational load significantly. The approach is illustrated on a simulation example.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Jan-Willem van Wingerde

    Cross-coupled iterative learning control: A computationally efficient approach applied to an industrial flatbed printer

    No full text
    Cross-coupled iterative learning control (ILC) can improve the contour tracking performance of manufacturing systems significantly. This paper aims to develop a framework for norm-optimal cross-coupled ILC that enables intuitive tuning of time- and iteration-varying weights of the exact contour error and its tangential counterpart. This leads to an iteration-varying ILC algorithm for which convergence conditions are developed. In addition, a resource-efficient implementation is developed that reduces the computational load significantly and enables the use of long reference signals. The approach is experimentally validated on an industrial flatbed printer.Team Jan-Willem van Wingerde
    corecore