6 research outputs found

    Influence of hollow glass microspheres on the mechanical and physical properties and cost of particle reinforced polymer composites

    No full text
    Abstract. The goal of the study was to find a cost-effective composition of a particle reinforced composite that is light in weight but has sufficient mechanical properties. The matrix of the particulate composite is unsaturated polyester resin that is reinforced with alumina trihydrate particles. Part of the alumina trihydrate proportion was replaced with hollow glass microspheres to reduce weight and save costs. In order to find out the influence of the light filler on the physical and mechanical properties of composites, materials with different percentages of the light filler were prepared. Test specimens were cut from moulded sheets that were fabricated with vacuum assisted extruder. Tensile strength, indentation hardness measured with a Barcol impressor, and density were determined. Based on the experimental data a multi-criteria optimization problem was formulated and solved to find the optimal design of the material. Artificial neural networks and a hybrid genetic algorithm were used. The optimal solution is given as a Pareto curve to represent the distinction between the density and selected mechanical properties of the composite material. The composite material filled with 6% hollow glass microspheres showed 3% loss in the tensile strength and 26% loss in the surface hardness compared to the composition without the filler. The weight decreased by 13% compared with the initial composition. The addition of hollow glass microspheres did not lower the net value of the material, it increased 7%

    Preliminary Study of the Influence of Post Curing Parameters to the Particle Reinforced Composite's Mechanical and Physical Properties

    No full text
    This study examines the effect of different post cure parameters to a polymer matrix particulate reinforced composite material. The goal is to evaluate the importance of different factors and to suggest a well-balanced post cure mode that supports the application of the material.<br />Polymer matrix composites are post cured at elevated temperature to increase the amount of cross linking to achieve better chemical and heat resistance and mechanical properties. Every material has an individual post cure process that depends from the raw materials. Post curing variables include temperature, duration of cure, the time between initial curing and post curing and temperature profile gradient.<br />There are several ways to determine the cure state of a polymer. It can be evaluated based on the mechanical and physical properties, residual styrene content, glass transition temperature, residual exotherm or solvent swelling test.<br /> For the determination of the suitable post cure parameters test slabs were casted and post cured with varying time and temperature. Glass transition temperature, residual exotherm, softening in ethanol, surface hardness, flexural strength and flexural modulus were determined. It is shown that the material should be cured at 60<sub> </sub>°C<sub> </sub>–<sub> </sub>80<sub> </sub>°C. With higher temperature and extended time of cure the glass transition temperature raises but the material becomes too brittle.<p>DOI: <a href="http://dx.doi.org/10.5755/j01.ms.18.3.2435">http://dx.doi.org/10.5755/j01.ms.18.3.2435</a></p

    HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    No full text
    In the present paper, the resistance of high velocity oxy-fuel (HVOF) sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617</p

    Design and Testing of Sandwich Structures with Different Core Materials

    No full text
    The purpose of this study was to design a light-weight sandwich panel for trailers. Strength calculations and selection of different materials were carried out in order to find a new solution for this specific application. The sandwich materials were fabricated using vacuum infusion technology. The different types of sandwich composite panels were tested in 4-point bending conditions according to ASTM C393/C393M. Virtual testing was performed by use of ANSYS software to simplify the core material selection process and to design the layers. 2D Finite element analysis (FEA) of 4-point bending was made with ANSYS APDL (Classic) software. Data for the FEA was obtained from the tensile tests of glass fiber plastic (GFRP) laminates. Virtual 2D results were compared with real 4-point bending tests.  3D FEA was applied to virtually test the selected sandwich structure in real working conditions. Based on FEA results the Pareto optimality concept has been applied and optimal solutions determined.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1340</p
    corecore