6 research outputs found

    Gene therapy with RALA/iNOS composite nanoparticles significantly enhances survival in a model of metastatic prostate cancer

    Get PDF
    Recent approvals of gene therapies by the FDA and the EMA for treatment of inherited disorders have further opened the door for assessment of nucleic acid pharmaceuticals for clinical usage. Arising from presence of damaged or inappropriate DNA, cancer is a condition particularly suitable for genetic intervention. The RALA peptide has been shown to be a potent non-viral delivery platform for nucleic acids. This study reports that complexation of RALA with a plasmid encoding inducible nitric oxide synthase (iNOS) DNA produces functional cationic nanoparticles with gene expression in PC-3 prostate cancer cells. Furthermore, repeated administrations of RALA/DNA nanoparticles to immunocompetent mice did not produce an immunological response, be that neutralization of the vector or release of inflammatory mediators. RALA/CMV-iNOS reduced the clonogenicity of PC-3 cells in vitro, and in an in vivo model of prostate cancer metastasis, systemically-delivered RALA/CMV-iNOS significantly improved the survival of mice. These results further validate RALA as a genetic cargo delivery vehicle and iNOS as a potent therapy for the treatment of cancer

    Molecular characterisation of the t(1;15)(p22;q22) translocation in the prostate cancer cell line LNCaP

    No full text
    Although chromosome translocations are well-documented recurrent events in hematological malignancies and soft tissue sarcomas, their significance in carcinomas is less clear. We report here the molecular characterization of the reciprocal translocation t(1;15)(p22;q22) in the prostate carcinoma cell line, LNCaP. The chromosome 1 breakpoint was localized to a single BAC clone, RP11-290M5, by sequential FISH analysis of clones selected from the NCBI chromosome 1 map. This was further refined to a 580-bp region by Southern blot analysis. A 2.85-kb fragment spanning the der(1) breakpoint was amplified by long-range inverse PCR. The breakpoint on chromosome 1 was shown to lie between the CYR61 and the DDAH1 genes with the der(1) junctional sequence linking the CYR61 gene to the TSPAN3 (TM4SF8) gene on chromosome 15. Confirmatory PCR and FISH mapping of the der(15) showed loss of chromosome material proximal to the breakpoint on chromosome 15, containing the PSTPIP1 and RCN2 genes. On the available evidence we conclude that this translocation does not result in an in-frame gene fusion. Comparative expressed sequence hybridization (CESH) and comparative genomic hybridization (CGH) analysis, showed relative down-regulation of gene expression surrounding the breakpoint, but no gross change in genomic copy number. Real-time quantitative RT-PCR for genes around the breakpoint supported the CESH data. Therefore, here we may have revealed a gene down-regulation mechanism associated with a chromosome translocation, either through small deletion at the breakpoint or through another means of chromosome domain related gene regulation. <br/
    corecore