250 research outputs found

    D6 Family Symmetry and Cold Dark Matter at LHC

    Full text link
    We consider a non-supersymmetric extension of the standard model with a family symmetry based on D6 Z2 Z2, where one of Z2's is exactly conserved. This Z2 forbids the tree-level neutrino masses and simultaneously ensures the stability of cold dark matter candidates. From the assumption that cold dark matter is fermionic we can single out the D6 singlet right-handed neutrino as the best cold dark mater candidate. We find that an inert charged Higgs with a mass between 300 and 750 GeV decays mostly into an electron (or a positron) with a large missing energy, where the missing energy is carried away by the cold dark matter candidate. This will be a clean signal at LHC.Comment: 20 pages, 7 figure

    Elastic Scattering and Direct Detection of Kaluza-Klein Dark Matter

    Full text link
    Recently a new dark matter candidate has been proposed as a consequence of universal compact extra dimensions. It was found that to account for cosmological observations, the masses of the first Kaluza-Klein modes (and thus the approximate size of the extra dimension) should be in the range 600-1200 GeV when the lightest Kaluza-Klein particle (LKP) corresponds to the hypercharge boson and in the range 1 - 1.8 TeV when it corresponds to a neutrino. In this article, we compute the elastic scattering cross sections between Kaluza-Klein dark matter and nuclei both when the lightest Kaluza-Klein particle is a KK mode of a weak gauge boson, and when it is a neutrino. We include nuclear form factor effects which are important to take into account due to the large LKP masses favored by estimates of the relic density. We present both differential and integrated rates for present and proposed Germanium, NaI and Xenon detectors. Observable rates at current detectors are typically less than one event per year, but the next generation of detectors can probe a significant fraction of the relevant parameter space.Comment: 23 pages, 11 figures; v2,v3: Ref. added, discussion improved, conclusions unchanged. v4: Introduction was expanded to be more appropriate for non experts. Various clarifications added in the text. Version to be published in New Journal of Physic

    The IGEX experiment revisited: a response to the critique of Klapdor-Kleingrothaus,Dietz, and Krivosheina

    Full text link
    This paper is a response to the article "Critical View to" the IGEX neutrinoless double-beta decay experiment..."published in Phys. Rev.D, Volume 65 (2002) 092007," by H.V.Klapdor-Kleingrothaus, A. Dietz, and I.V.Krivosheina, published as preprint hep-ph/0403056. The criticisms are confronted, and the questions raised are answered. We demonstrate that the lower limit quoted by IGEX, for the half life of Ge-76 neutrinoless double beta decay, 1.57x10**25 y, is correct and that there was no "arithmetical error"-as claimed in the " Critical Review" article

    The Higgs Sector and CoGeNT/DAMA-Like Dark Matter in Supersymmetric Models

    Full text link
    Recent data from CoGeNT and DAMA are roughly consistent with a very light dark matter particle with m\sim 4-10\gev and spin-independent cross section of order \sigma_{SI} \sim (1-3)\times 10^{-4}\pb. An important question is whether these observations are compatible with supersymmetric models obeying Ωh20.11\Omega h^2\sim 0.11 without violating existing collider constraints and precision measurements. In this talk, I review the fact the the Minimal Supersymmetric Model allows insufficient flexibility to achieve such compatibility, basically because of the highly constrained nature of the MSSM Higgs sector in relation to LEP limits on Higgs bosons. I then outline the manner in which the more flexible Higgs sectors of the Next-to-Minimal Supersymmetric Model and an Extended Next-to-Minimal Supersymmetric Model allow large σSI\sigma_{SI} and Ωh20.11\Omega h^2\sim 0.11 at low LSP mass without violating LEP, Tevatron, BaBar and other experimental limits. The relationship of the required Higgs sectors to the NMSSM "ideal-Higgs" scenarios is discussed.Comment: 11 pages, 3 figures. To appear in Proceedings of PASCOS 2010. The paper is a compilation of talks given at: PASCOS 2010, ORSAY Workshop on "Higgs Hunting", and SLAC Workshop on "Topologies for Early LHC Searches

    DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS

    Get PDF
    This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV

    The DarkSide experiment

    Get PDF
    DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m>10GeV) and weakly interactive (WIMP). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10−44 cm2 for a WIMP mass of 100GeV/c2. The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ∼ 20 tons
    corecore