4 research outputs found

    A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle

    Get PDF
    BACKGROUND: Reproductive success depends on a functional oviduct for gamete storage, maturation, fertilization, and early embryonic development. The ovarian-derived steroids estrogen and progesterone are key regulators of oviductal function. The objective of this study was to investigate luteal and follicular phase-specific oviductal epithelial cell function by using microarray-based transcriptional profiling, to increase our understanding of mRNAs regulating epithelial cell processes, and to identify novel genes and biochemical pathways that may be found to affect fertility in the future. METHODS: Six normally cycling Angus heifers were assigned to either luteal phase (LP, n = 3) or follicular phase (FP, n = 3) treatment groups. Heifers in the LP group were killed between day 11 and 12 after estrus. Heifers in the FP group were treated with 25 mg PGF(2α) (Lutalyse, Pfizer, NY) at 8 pm on day 6 after estrus and killed 36 h later. Transcriptional profiling by microarray and confirmation of selected mRNAs by real-time RT-PCR analyses was performed using total RNA from epithelial cells isolated from sections of the ampulla and isthmus collected from LP and FP treatment groups. Differentially expressed genes were subjected to gene ontology classification and bioinformatic pathway analyses. RESULTS: Statistical one-way ANOVA using Benjamini-hochberg multiple testing correction for false discovery rate (FDR) and pairwise comparison of epithelial cells in the ampulla of FP versus LP groups revealed 972 and 597 transcripts up- and down-regulated, respectively (P < 0.05). Within epithelial cells of the isthmus in FP versus LP groups, 946 and 817 transcripts were up- and down-regulated, respectively (P < 0.05). Up-regulated genes from both ampulla and isthmus were found to be largely involved in cholesterol biosynthesis and cell cycle pathways, while down-regulated genes were found in numerous inflammatory response pathways. CONCLUSIONS: Microarray-based transcriptional profiling revealed phase of the cycle-dependent changes in the expression of mRNA within the epithelium of the oviducts’ ampulla and isthmus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12958-015-0077-1) contains supplementary material, which is available to authorized users

    Bisphenol A alters β-hCG and MIF release by human placenta: an in vitro study to understand the role of endometrial cells

    No full text
    A proper fetomaternal immune-endocrine cross-talk in pregnancy is fundamental for reproductive success. This might be unbalanced by exposure to environmental chemicals, such as bisphenol A (BPA). As fetoplacental contamination with BPA originates from the maternal compartment, this study investigated the role of the endometrium in BPA effects on the placenta. To this end, in vitro decidualized stromal cells were exposed to BPA 1 nM, and their conditioned medium (diluted 1 : 2) was used on chorionic villous explants from human placenta. Parallel cultures of placental explants were directly exposed to 0.5 nM BPA while, control cultures were exposed to the vehicle (EtOH 0.1%). After 24-48 h, culture medium from BPA-treated and control cultures was assayed for concentration of hormone human Chorionic Gonadotropin ( β -hCG) and cytokine Macrophage Migration Inhibitory Factor (MIF). The results showed that direct exposure to BPA stimulated the release of both MIF and β -hCG. These effects were abolished/diminished in placental cultures exposed to endometrial cell-conditioned medium. GM-MS analysis revealed that endometrial cells retain BPA, thus reducing the availability of this chemical for the placenta. The data obtained highlight the importance of in vitro models including the maternal component in reproducing the effects of environmental chemicals on human fetus/placenta

    Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science

    No full text
    corecore