4 research outputs found

    On-board plasma assisted fuel reforming

    No full text
    It is well known that the addition of gaseous fuels to the intake manifold of diesel engines can have significant benefits in terms of both reducing emissions of hazardous gases and soot and improving fuel economy. Particularly, the addition of LPG has been investigated in numerous studies. Drawbacks, however, of such dual fuel strategies can be found in storage complexity and end-user inconvenience. It is for this reason that on-board refining of a single fuel (for example, diesel) could be an interesting alternative. A second-generation fuel reformer has been engineered and successfully tested. The reformer can work with both gaseous and liquid fuels and by means of partial oxidation of a rich fuel-air mix, converts these into syngas: a mixture of H2 and CO. The process occurs as partial oxidation takes place in an adiabatic ceramic reaction chamber. High efficiency is ensured by the high temperature inside the chamber due to heat release. Thus, efficient thermal insulation is crucial to maintain said temperature. Heat recuperation from the reformer exhaust also improves the thermal efficiency. The prototype yields up to 20% of H2 (80% of the theoretical maximum) and 22% of CO with all kinds of fuels tested, including automotive diesel fuel. Efficient thermal insulation allows to keep the dimensions below 40 cm in any direction for a full burning power of 10-30 kW while outer wall of the reformer is exposed to air at normal temperature

    Non-equilibrium plasma ignition for internal combustion engines

    No full text
    High-voltage nanosecond gas discharge has been shown to be an efficient way to ignite ultra-lean fuel air mixtures in a bulk volume, thanks to its ability to produce both high temperature and radical concentration in a large discharge zone. Recently, a feasibility study has been carried out to study plasma-assisted ignition under high-pressure high-temperature conditions similar to those inside an internal combustion engine. Ignition delay times were measured during the tests, and were shown to be decreasing under high-voltage plasma excitation. The discharge allowed instant control of ignition, and specific electrode geometry designs enabled volumetric ignition even at high-pressure conditions

    Advanced Combustion in Natural Gas-Fueled Engines

    No full text
    Current energy and emission regulations set the requirements to increase the use of natural gas in engines for transportation and power generation. The characteristics of natural gas are high octane number, less amount of carbon in the molecule, suitable to lean combustion, less ignitibility, etc. There are some advantages of using natural gas for engine combustion. First, less carbon dioxide is emitted due to its molecular characteristics. Second, higher thermal efficiency is achieved owing to the high compression ratio compared to that of gasoline engines. Natural gas has higher octane number so that knock is hard to occur even at high compression ratios. However, this becomes a disadvantage in homogeneous charge compression ignition (HCCI) engines or compression ignition engines because the initial auto-ignition is difficult to be achieved. When natural gas is used in a diesel engine, primary natural gas–air mixture is ignited with small amount of diesel fuel. It was found that under high pressure, lean conditions, and with the control of certain parameters, the end gas is auto-ignited without knock and improves the engine combustion efficiency. Recently, some new fuel ignition technologies have been developed to be applied to natural gas engines. These are the laser-assisted and plasma-assisted ignition systems with high energy and compact size
    corecore