18 research outputs found

    Experimental magic state distillation for fault-tolerant quantum computing

    Full text link
    Any physical quantum device for quantum information processing is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error correcting or error avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states such as |0> and the Magic State. Here we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity

    Anyons in a weakly interacting system

    Full text link
    We describe a theoretical proposal for a system whose excitations are anyons with the exchange phase pi/4 and charge -e/2, but, remarkably, can be built by filling a set of single-particle states of essentially noninteracting electrons. The system consists of an artificially structured type-II superconducting film adjacent to a 2D electron gas in the integer quantum Hall regime with unit filling fraction. The proposal rests on the observation that a vacancy in an otherwise periodic vortex lattice in the superconductor creates a bound state in the 2DEG with total charge -e/2. A composite of this fractionally charged hole and the missing flux due to the vacancy behaves as an anyon. The proposed setup allows for manipulation of these anyons and could prove useful in various schemes for fault-tolerant topological quantum computation.Comment: 7 pages with 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Efficient fault-tolerant quantum computing

    Full text link
    Fault tolerant quantum computing methods which work with efficient quantum error correcting codes are discussed. Several new techniques are introduced to restrict accumulation of errors before or during the recovery. Classes of eligible quantum codes are obtained, and good candidates exhibited. This permits a new analysis of the permissible error rates and minimum overheads for robust quantum computing. It is found that, under the standard noise model of ubiquitous stochastic, uncorrelated errors, a quantum computer need be only an order of magnitude larger than the logical machine contained within it in order to be reliable. For example, a scale-up by a factor of 22, with gate error rate of order 10510^{-5}, is sufficient to permit large quantum algorithms such as factorization of thousand-digit numbers.Comment: 21 pages plus 5 figures. Replaced with figures in new format to avoid problem

    Observation of Dirac plasmons in a topological insulator

    Full text link
    Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons of massless Dirac electrons were instead recently observed in a purely two-dimensional electron system (2DEG)like graphene, and their properties are promising for new tunable plasmonic metamaterials in the terahertz and the mid-infrared frequency range. Dirac quasi-particles are known to exist also in the two-dimensional electron gas which forms at the surface of topological insulators due to a strong spin-orbit interaction. Therefore,one may look for their collective excitations by using infrared spectroscopy. Here we first report evidence of plasmonic excitations in a topological insulator (Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W and period 2W to select suitable values of the plasmon wavevector k. Their lineshape was found to be extremely robust vs. temperature between 6 and 300 K, as one may expect for the excitations of topological carriers. Moreover, by changing W and measuring in the terahertz range the plasmonic frequency vP vs. k we could show, without using any fitting parameter, that the dispersion curve is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013

    Topological Quantum Glassiness

    Full text link
    Quantum tunneling often allows pathways to relaxation past energy barriers which are otherwise hard to overcome classically at low temperatures. However, this is not always the case. In this paper we provide simple exactly solvable examples where the barriers each system encounters on its approach to lower and lower energy states become increasingly large and eventually scale with the system size. If the environment couples locally to the physical degrees of freedom in the system, tunnelling under large barriers requires processes whose order in perturbation theory is proportional to the width of the barrier. This results in quantum relaxation rates that are exponentially suppressed in system size: For these quantum systems, no physical bath can provide a mechanism for relaxation that is not dynamically arrested at low temperatures. The examples discussed here are drawn from three dimensional generalizations of Kitaev's toric code, originally devised in the context of topological quantum computing. They are devoid of any local order parameters or symmetry breaking and are thus examples of topological quantum glasses. We construct systems that have slow dynamics similar to either strong or fragile glasses. The example with fragile-like relaxation is interesting in that the topological defects are neither open strings or regular open membranes, but fractal objects with dimension d=ln3/ln2d^* = ln 3/ ln 2.Comment: (18 pages, 4 figures, v2: typos and updated figure); Philosophical Magazine (2011

    Superconducting Nanocircuits for Topologically Protected Qubits

    Full text link
    For successful realization of a quantum computer, its building blocks (qubits) should be simultaneously scalable and sufficiently protected from environmental noise. Recently, a novel approach to the protection of superconducting qubits has been proposed. The idea is to prevent errors at the "hardware" level, by building a fault-free (topologically protected) logical qubit from "faulty" physical qubits with properly engineered interactions between them. It has been predicted that the decoupling of a protected logical qubit from local noises would grow exponentially with the number of physical qubits. Here we report on the proof-of-concept experiments with a prototype device which consists of twelve physical qubits made of nanoscale Josephson junctions. We observed that due to properly tuned quantum fluctuations, this qubit is protected against magnetic flux variations well beyond linear order, in agreement with theoretical predictions. These results demonstrate the feasibility of topologically protected superconducting qubits.Comment: 25 pages, 5 figure

    Quantized, finally

    No full text
    corecore