2 research outputs found

    Diffeomorphisms and families of Fourier-Mukai transforms in mirror symmetry

    Full text link
    Assuming the standard framework of mirror symmetry, a conjecture is formulated describing how the diffeomorphism group of a Calabi-Yau manifold Y should act by families of Fourier-Mukai transforms over the complex moduli space of the mirror X. The conjecture generalizes a proposal of Kontsevich relating monodromy transformations and self-equivalences. Supporting evidence is given in the case of elliptic curves, lattice-polarized K3 surfaces and Calabi-Yau threefolds. A relation to the global Torelli problem is discussed.Comment: Approx. 20 pages LaTeX. One reference adde
    corecore