3,777 research outputs found
An experimental investigation of the flow past a finite circular cylinder at a low subcritical Reynolds number
Results of hot wire measurements made in the near wake at a Reynolds number of 9955 are reported. The measurements include the mean velocity profiles, root mean square values of the velocity fluctuations, frequency spectra, and velocity cross correlations. The mean velocity profiles were used to determine the wake width, whose variation in the downstream and spanwise directions was examined. It is observed that close to the cylinder, the wake is narrower toward the free end than it is away from it, while further downstream the wake is wider toward the tip than it is away from it. It is found that the flow over the span can be characterized by four regions: a tip region where vortex shedding occurs at a lower frequency than that prevalent for away from the tip; an intermediate region adjacent to the first one where a frequency component of a nonshedding character is present; a third region characterized by a gradually increasing shedding frequency with increasing distance from the tip; and a two dimensional region where the shedding frequency is constant
Improved Bond Stress-Slip Relationships for CFRP-Strengthened Masonry Triplets
Carbon fibre-reinforced polymer (CFRP) emerges as a viable solution for reinforcing unreinforced masonry (URM) walls subjected to shear loads. While masonry structures are straightforward to construct, the complexity of the construction materials, especially in terms of their mechanical properties, poses challenges for numerical studies of their structural behaviour. Walls, being fundamental components in masonry construction, play a crucial role in transferring both horizontal and vertical lateral forces. This study investigates the enhancement of masonry wall behaviour through the reinforcement of CFRP. CFRP reinforcement increases ductility and strength, reducing the risk of failure under shear conditions. Additionally, CFRP composites present a practical solution to strengthening masonry structures compared to traditional reinforcement. However, brick, mortar, and CFRP have not been thoroughly investigated. Experimental tests on the bond behaviour of different configurations of CFRP-retrofitted masonry triplets have not been performed before and are therefore presented in this paper. Triplet specimens, comprising three bricks and two mortar joints, both with and without CFRP strengthening, were subjected to bond testing. The study affirms that masonry triplets strengthened with CFRP under shear loads exhibit strength levels at least four to six times greater than those without CFRP. The experimental work was carried out with eight different CFRP configurations on triplet masonry, and each test was repeated four times. Further, the bond stress-slip relationship in the case of masonry triplets with and without CFRP was predicted with new mathematical equations based on the conducted test results. These equations were included in the commercial finite element software ANSYS and used to conduct simulations of CFRP-reinforced masonry triplets. The numerical results indicate good agreement between the finite element model and the test results. The outcome of this research improves the current knowledge on the use of CFRP to reinforce masonry walls with brick and mortar, which will contribute to the understanding of the effect of CFRP on masonry structures.The outcome of this research improves the current knowledge on the use of CFRP to reinforce masonry walls with brick and mortar, which will contribute to the understanding of the effect of CFRP on masonry structures
Recommended from our members
Finite element model for predicting the shear behavior of FRP-strengthened RC members
The shear behavior of FRP strengthened reinforced concrete (FRP strengthened RC) membrane elements can be predicted by developing logical models that satisfy the principles of mechanics of materials namely stress equilibrium, strain compatibility, and constitutive relationships of concrete, steel and, FRP reinforcements. The Softened Membrane Model (SMM), which was developed for predicting the shear behavior of reinforced concrete (RC) membrane elements, is extended to FRP strengthened RC members subjected to shear. This new analytical model, referred to as the Softened Membrane Model for FRP strengthened RC members (SMM-FRP), considers new constitutive laws for each material component of the member. Similar to the case of the SMM model for RC, this new SMM-FRP model can predict the entire stress-strain curve, including pre- and post-cracking, and the ascending and descending branches. The SMM-FRP is implemented into an OpenSees-based finite element program for a membrane 2-D element that will allow structural engineers to predict the monotonic responses of FRP strengthened RC members subjected to shear. The developed program is validated in this paper by the prediction of the monotonic responses of 10 FRP strengthened RC panels subjected to pure shear stresses. The good agreement between the experimental and analytical results confirms the validity of the analytical model in predicting the shear behavior of RC members strengthened with FRP sheets
Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.
Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers
Recommended from our members
Softening Coefficient of Reinforced Concrete Elements Subjected to Three-Dimensional Loads
Reinforced concrete structures are prone to fail under the effect of complex threedimensional loading conditions. Accurate constitutive models for concrete under the effect of triaxial stresses are therefore necessary in order to predict the proper response. Strong interaction between in-plane and out of plane shear loads has been observed in experimental tests of concrete structures. This paper presents the derivation of concrete constitutive laws under the effect of triaxial stresses, in particular the softening coefficient, using the results of large-scale tests on representative concrete panels. The experimental program of 7 full-scale panel specimens is briefly described, and the results are then used to derive analytical expressions for the softening coefficient under the effect of bi-directional shear. Finally, existing membrane shear theories are modified to take into consideration the effect of applied out-of-plane shear. The response of the tested panels proved to be accurately predicted using the new theory
Recommended from our members
Behavior of Reinforced Concrete Membrane Elements Subjected to Bidirectional Shear Loads
The shear design and behavior of a typical membrane reinforced concrete (RC) element has been extensively studied in the past several decades. Such design requires knowledge of the constitutive behavior of RC elements subjected to a shear stress acting along its plane (in-plane shear). These constitutive models were accurately derived from experimental test data on representative RC panel elements. The true behavior of many large, complex structures, however, involves interaction between the in-plane and out-of-plane shear stresses acting on the RC element. To investigate this interaction, large-scale tests on representative concrete panels need to be conducted. The University of Houston is equipped with a unique universal panel testing machine that was used for this purpose. The panel tester enhanced the understanding of the in-plane shear behavior of RC elements. Recently, 10 additional hydraulic jacks were mounted in the out-of-plane direction of the universal panel tester to facilitate testing of concrete elements subjected to bidirectional and tridirectional shear stresses. The experimental program included designing, fabricating, instrumenting, and testing full-scale RC elements. The elements were subjected to different combinations of in-plane and out-of-plane shear loads. A strong interaction between in-plane shear strength and out-of-plane shear stresses was observed
The six-functor formalism for rigid analytic motives
We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud's approach to rigid analytic geometry
Acute entanglement and Photon/Phonons statistics in a balanced/unbalanced PT-symmetry systems
We study the significance of Photon/Phonons bunching and antibunching on the
dynamics of the quantum entanglement in the presence of coupled PT-symmetry
systems with balanced/unbalanced gain and loss. We suggest a hybrid
electromechanical system to realize a strong and tunable coupling between a
Coplanar-Waveguide (CPW) microwave cavity and a nanomechanical resonator (NAMR)
via a superconducting Transmon qubit. The hybrid electromechanical system
consists of a non-hermitian Hamiltonian with balanced/unbalanced gain and loss.
The interplay between the quantum entanglement and the -symmetry systems is
also thoroughly investigated. We frame a connection between Number operators,
Photon/Phonons antibunching, and entanglement. It has been observed that the
relative Photon/Phonons numbers play a key role in quantum entanglement
dynamics. Furthermore, we study that quantum entanglement can be characterized
by defining a Photon/Phonons antibunching. The Photon/Phonons antibunching is
strongly dependent on the initial squeezed state and the rate of
balanced/unbalanced gain and loss of the system
Recommended from our members
Behavior of FRP-strengthened RC elements subjected to pure shear
The shear behavior of fiber reinforced polymer strengthened reinforced concrete (FRP-strengthened RC) has been the focus of extensive research studies. However, the mechanism of this complex phenomenon has not been fully clarified. Recent analytical models which were developed for predicting the shear capacity of FRP strengthened RC girders were based on test results of simply supported beam specimens with various shear span-to-depth (a/d) ratios. In such tests no region of the specimen is subjected to uniform stress conditions, Therefore, the results of such tests cannot predict the true pure shear behavior due to non-uniformity of stresses, the presence of flexural and other non-shear related effects such as a/d ratio that cannot be filtered out. Therefore, proper design of shear strengthening using FRP requires testing of elements that are subjected to pure shear case primary before adding other governing effects. This allows a careful investigation and full understanding of the behavior at the element level. In order to accomplish this task, panel testing of representative RC specimens strengthened with FRP sheets were needed. This paper reports the testing of 10 FRP strengthened RC panels subjected to pure shear stress field. The tests were carried out to evaluate the effects of three variables: FRP stiffness, FRP wrapping scheme, and transverse steel reinforcement ratio. The test results showed that these three variables greatly affected the shear behavior due to various types of failure modes associated with FRP strengthening. In addition, it was observed that the magnitude of increased shear capacity associated with the application of FRP sheets depends not only upon the stiffness of FRP, but also on the stiffness of internal shear reinforcement. With the increase of internal steel shear reinforcement, the effectiveness of shear gain due to externally bonded FRP decreases
Effective vibrating barriers design for the Zoser pyramid using artificial neural network
Vibrating Barrier (ViBa) is a non-invasive strategy used to protect buildings, especially ancient and historic structures, from seismic wave vibrations. The ViBa is a spring-mass device installed at a separate location beneath the ground surrounding the structure in concern, for the purpose of reducing ground motion energy, without any intervention with the structure itself. The step pyramid of Zoser was one of the archeological monuments affected by the 1992 Earthquake in Egypt. In this work, a new approach of ViBa design is proposed to protect the step pyramid of Zoser using Artificial Neural Network (ANN). A numerical model was developed to test the predicted pyramid seismic behavior using the ANN-derived ViBa parameters. The ANN optimization approach shows a reduction in the peak step pyramid acceleration by 46 %. This reduction was obtained using tuning and optimization of the developed ANN
- …