43 research outputs found

    A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Get PDF
    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1–5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate–lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm−3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation

    Production/maintenance cooperative scheduling using multi-agents and fuzzy logic

    Get PDF
    Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions

    A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Get PDF
    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1–5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate–lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm−3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation

    Les différentes formes tribologiques d'usure des surfaces méttaliques (première partie)

    No full text
    Les surfaces métalliques, soumises à un frottement solide ou fluide, en présence ou non de lubrifiants, sont affectées par des formes d'usure qui peuvent aller de l'usure douce régulière et contrôlable (usure normale) à la détérioration brutale entraînant la mise hors service du mécanisme. Ces types d'usure, que l'on a classés en quatre types fondamentaux : usure adhésive, usure abrasive, usure corrosive, usure par fatigue et en un certain nombre de formes d'usure secondaires telles que les corrosions de contacts, les usures d'origines électriques et l'érosion par cavitation, sont analysés des points de vue théorique et pratique en considérant essentiellement les aspects tribologiques et métallurgiques. De plus, les moyens de combattre chacune de ces formes d'usure sont proposés. Le présent article fait le point des connaissances actuelles sur le sujet considéré, étayées par l'expérience acquise à l'Institut Français du Pétrole (IFP) dans le domaine de l'usure

    Évolution des classifications et spécifications des huiles pour moteurs (situation en avril 1989) Evolution of Classifications and Specifications for Motor Oils (Situation April 1989)

    No full text
    D'une manière générale, les lubrifiants pour moteurs répondent à des classifications de viscosité et de service ainsi qu'à des spécifications émanant d'organismes nationaux ou internationaux, comme la Society of Automotive Engineers (SAE) et l'American Petroleum Institute (API) aux États-Unis ou le Comité des Constructeurs d'Automobiles du Marché Commun (CCMC) en Europe. Celles-ci sont destinées à mieux qualifier les produits. De leur côté, les constructeurs de moteurs établissent, de plus en plus systématiquement, des normes d'homologation d'huiles afin de satisfaire au mieux les exigences de lubrification de leur production dans le but d'améliorer la longévité et la fiabilité des mécaniques tout en rationalisant leur entretien. De grands utilisateurs, enfin, tels que les armées ou les grandes administrations civiles, ont également mis au point des spécifications, véritables cahiers des charges, pour satisfaire leurs propres besoins. Toutes ces normes définissent des limites de caractéristiques physico-chimiques ainsi que des niveaux minimaux de performances à atteindre lors d'essais sur moteurs et sur simulateurs de laboratoire. Avec le développement technologique des moteurs à essence et Diesel, ainsi qu'avec l'apparition de nouvelles contraintes législatives, économiques et écologiques (économie d'énergie, allongement des intervalles de vidange, lutte antipollution, . . . ), ces spécifications sont devenues de plus en plus nombreuses et de plus en plus complexes. De plus, elles sont en perpétuelle évolution, quelquefois à un rythme excessif. Malgré cela, le présent document fait le point sur la situation des normes au début de l'année 1989, analyse les plus importantes d'entre elles, rappelle, le cas échéant, les grandes étapes qui ont mené aux spécifications actuelles et, lorsque cela est possible, indique leurs évolutions prévisibles dans un avenir relativement proche. <br> Generally speaking, lubricants for engines meet viscosity and service classifications as well as specifications issuing from national or international agencies such as Society of Automotive Engineers (SAE) and American Petroleum Institute (API) in the United States or Comité des Constructeurs d'Automobiles du Marché Commun (CCMC) in Europe. The aim of these classifications and specifications is to qualify products more specifically. At the same time, engine manufacturers are more and more systematically establishing approval standards for oils to better meet the lubrication requirements of their engines so as to improve their mechanical longevity and reliability while making maintenance more logical. Major users such as armed forces or the leading civil administrations have also developed comprehensive specifications to meet their own needs. All these standards define the limits of physicochemical characteristics as well as the minimum performance levels to be reached during testing in engines and laboratory simulators. With the technological development of gasoline and diesel engines together with the appearance of new legislative, economic and ecological constraints (energy conservation, longer times between oil changes, pollution control, etc. ), these specifications have become more and more numerous and more and more complex. Likewise, they are constantly evolving, sometimes at an excessive rate. Despite this, the present article reviews the situation of standards as of the beginning of 1989, analyzes the most important among them, as the case may be, the main phases leading to current specifications and, whenever possible, indicates their foreseeable evolution in the relatively close future

    L'usure par polissage des cylindres de moteurs diesel suralimentés.

    No full text
    L'usure par polissage des cylindres de moteurs Diesel suralimentés, qui se présente sous forme de plages poliesd'aspect glacé, peut entraîner une consommation d'huile excessive, le rayage adhésif, puis le grippage des segments et des cylindres. De ce fait, le phénomène limite le développement de la suralimentation de ces moteurs. Grâce à des techniques fines d'analyses des surfaces, il a été montré que cette usure était engendrée par l'action abrasive des dépôts de haut de piston dont la structure dépend essentiellement de la composition du lubrifiant et dans une certaine mesure de celle du combustible
    corecore