2,792 research outputs found

    Performance analysis of dense small cell networks with dynamic TDD

    Full text link
    © 1967-2012 IEEE. Small cell networks (SCNs) are envisioned to embrace dynamic time division duplexing (TDD) in order to tailor downlink (DL)/uplink (UL) subframe resources to quick variations and burstiness of DL/UL traffic. The study of dynamic TDD is particularly important because it serves as the predecessor of the full duplex transmission technology, which has been identified as one of the candidate technologies for the 5th-generation (5G) networks. In this paper, we study the performance of the synchronous dynamic TDD from a media access control layer viewpoint, which has been widely adopted in the existing 4G systems. Furthermore, we analyze the coverage probability and the area spectral efficiency in the DL and UL of dense SCNs considering the synchronous dynamic TDD transmissions, and the performance impact of dynamic TDD transmissions on the ASE in the DL and UL of dense SCNs is discussed. Moreover, the performance impact of interference cancellation is also explored. Our analytical results shed new light on the performance of dynamic TDD in future synchronous 5G networks

    Uplink Performance Analysis of Dense Cellular Networks with LoS and NLoS Transmissions

    Full text link
    © 2002-2012 IEEE. In this paper, we analyze the coverage probability and the area spectral efficiency (ASE) for the uplink (UL) of dense small cell networks (SCNs) considering a practical path loss model incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. Compared with the existing work, we adopt the following novel approaches in this paper: 1) we assume a practical user association strategy (UAS) based on the smallest path loss, or equivalently the strongest received signal strength; 2) we model the positions of both base stations (BSs) and the user equipments (UEs) as two independent homogeneous Poisson point processes; and 3) the correlation of BSs' and UEs' positions is considered, thus making our analytical results more accurate. The performance impact of LoS and NLoS transmissions on the ASE for the UL of dense SCNs is shown to be significant, both quantitatively and qualitatively, compared with existing work that does not differentiate LoS and NLoS transmissions. In particular, existing work predicted that a larger UL power compensation factor would always result in a better ASE in the practical range of BS density, i.e., 10-1∼ 10-3 BSs/km2. However, our results show that a smaller UL power compensation factor can greatly boost the ASE in the UL of dense SCNs, i.e., 10-2∼ 10-3 BSs/km2 , while a larger UL power compensation factor is more suitable for sparse SCNs, i.e., 10-1∼ 10-2,BSs/km-2

    Introduction to Khovanov Homologies. I. Unreduced Jones superpolynomial

    Full text link
    An elementary introduction to Khovanov construction of superpolynomials. Despite its technical complexity, this method remains the only source of a definition of superpolynomials from the first principles and therefore is important for development and testing of alternative approaches. In this first part of the review series we concentrate on the most transparent and unambiguous part of the story: the unreduced Jones superpolynomials in the fundamental representation and consider the 2-strand braids as the main example. Already for the 5_1 knot the unreduced superpolynomial contains more items than the ordinary Jones.Comment: 33 page

    Anomalous dependence of the c-axis polarized Fe B1g_{1g} phonon mode with Fe and Se concentrations in Fe1+y_{1+y}Te1x_{1-x}Sex_x

    Get PDF
    We report an investigation of the lattice dynamical properties in a range of Fe1+y_{1+y}Te1x_{1-x}Sex_{x} compounds, with special emphasis on the c-axis polarized vibration of Fe with B1g_{1g} symmetry, a Raman active mode common to all families of Fe-based superconductors. We have carried out a systematic study of the temperature dependence of this phonon mode as a function of Se xx and excess Fe yy concentrations. In parent compound Fe1+y_{1+y}Te, we observe an unconventional broadening of the phonon between room temperature and magnetic ordering temperature TNT_N. The situation smoothly evolves towards a regular anharmonic behavior as Te is substituted for Se and long range magnetic order is replaced by superconductivity. Irrespective to Se contents, excess Fe is shown to provide an additional damping channel for the B1g_{1g} phonon at low temperatures. We performed Density Functional Theory (DFT) ab-initio calculations within the local density approximation (LDA) to calcuate the phonon frequencies including magnetic polarization and Fe non-stoichiometry in the Virtual Crystal Approximation (VCA). We obtained a good agreement with the measured phonon frequencies in the Fe-deficient samples, while the effects of Fe excess are poorly reproduced. This may be due to excess Fe-induced local magnetism and low energy magnetic fluctuations that can not be treated accurately within these approaches. As recently revealed by neutron scattering and μ\mu-SR studies, these phenomena occur in the temperature range where anomalous decay of the B1g_{1g} phonon is observed, and suggests a peculiar coupling of this mode with local moments and spin fluctuations in Fe1+y_{1+y}Te1x_{1-x}Sex_{x}

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Optimizing the diagnostic power with gastric emptying scintigraphy at multiple time points

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric Emptying Scintigraphy (GES) at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis. The objectives of this study were: 1) to investigate the best time point and the best combination of multiple time points for diagnosing gastroparesis with repeated GES measures, and 2) to contrast and cross-validate Fisher's Linear Discriminant Analysis (LDA), a rank based Distribution Free (DF) approach, and the Classification And Regression Tree (CART) model.</p> <p>Methods</p> <p>A total of 320 patients with GES measures at 1, 2, 3, and 4 hour (h) after a standard meal using a standardized method were retrospectively collected. Area under the Receiver Operating Characteristic (ROC) curve and the rate of false classification through jackknife cross-validation were used for model comparison.</p> <p>Results</p> <p>Due to strong correlation and an abnormality in data distribution, no substantial improvement in diagnostic power was found with the best linear combination by LDA approach even with data transformation. With DF method, the linear combination of 4-h and 3-h increased the Area Under the Curve (AUC) and decreased the number of false classifications (0.87; 15.0%) over individual time points (0.83, 0.82; 15.6%, 25.3%, for 4-h and 3-h, respectively) at a higher sensitivity level (sensitivity = 0.9). The CART model using 4 hourly GES measurements along with patient's age was the most accurate diagnostic tool (AUC = 0.88, false classification = 13.8%). Patients having a 4-h gastric retention value >10% were 5 times more likely to have gastroparesis (179/207 = 86.5%) than those with ≤10% (18/113 = 15.9%).</p> <p>Conclusions</p> <p>With a mixed group of patients either referred with suspected gastroparesis or investigated for other reasons, the CART model is more robust than the LDA and DF approaches, capable of accommodating covariate effects and can be generalized for cross institutional applications, but could be unstable if sample size is limited.</p

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page
    corecore