12 research outputs found
Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation
Reaction pathways of biochemical processes are influenced by the dissipative electrostatic interaction of the reagents with solvent water molecules. The simulation of these interactions requires a parametrization of the permanent and induced dipole moments. However, the underlying molecular polarizability of water and its dependence on ions are partially unknown. Here, we apply intense terahertz pulses to liquid water, whose oscillations match the timescale of orientational relaxation. Using a combination of terahertz pump / optical probe experiments, molecular dynamics simulations, and a Langevin dynamics model, we demonstrate a transient orientation of their dipole moments, not possible by optical excitation. The resulting birefringence reveals that the polarizability of water is lower along its dipole moment than the average value perpendicular to it. This anisotropy, also observed in heavy water and alcohols, increases with the concentration of sodium iodide dissolved in water. Our results enable a more accurate parametrization and a benchmarking of existing and future water models
Computational methods for the assignment of vibrational modes in crystalline materials
In this chapter we provide a description of the computational tools used for the calculation of the terahertz absorption spectrum of a crystalline material, with a particular focus on molecular crystals. We explain using examples why it is not correct to use the normal modes of vibration of an isolated molecule to understand the vibrational spectrum of a material in the terahertz range, but that the features in this spectral region are largely related to intermolecular interactions. It is, therefore, necessary to use methods that consider the periodicity of the crystal structure. We describe the two main methods used for the calculation of the vibrational frequencies and their absorption intensities of a crystal: lattice dynamics and molecular dynamics, providing examples showing the benefits and limitations of each method