673 research outputs found
PAC1 receptor-mediated clearance of tau in postsynaptic compartments attenuates tau pathology in mouse brain
Accumulation of pathological tau in synapses has been identified as an early event in Alzheimer's disease (AD) and correlates with cognitive decline in patients with AD. Tau is a cytosolic axonal protein, but under disease conditions, tau accumulates in postsynaptic compartments and presynaptic terminals, due to missorting within neurons, transsynaptic transfer between neurons, or a failure of clearance pathways. Using subcellular fractionation of brain tissue from rTg4510 tau transgenic mice with tauopathy and human postmortem brain tissue from patients with AD, we found accumulation of seed-competent tau predominantly in postsynaptic compartments. Tau-mediated toxicity in postsynaptic compartments was exacerbated by impaired proteasome activity detected by measuring lysine-48 polyubiquitination of proteins targeted for proteasomal degradation. To combat the accumulation of tau and proteasome impairment in the postsynaptic compartments of rTg4510 mouse brain, we stimulated the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) with its ligand PACAP administered intracerebroventricularly to rTg4510 mice. We observed enhanced synaptic proteasome activity and reduced total tau in postsynaptic compartments in mouse brain after PACAP treatment. The clearance of tau from postsynaptic compartments correlated with attenuated tauopathy and improved cognitive performance of rTg4510 transgenic mice on two behavioral tests. These results suggest that activating PAC1R could prevent accumulation of aggregate-prone tau and indicate a potential therapeutic approach for AD and other tauopathies
P62 accumulates through neuroanatomical circuits in response to tauopathy propagation
In Alzheimer's disease and related tauopathies, trans-synaptic transfer and accumulation of pathological tau from donor to recipient neurons is thought to contribute to disease progression, but the underlying mechanisms are poorly understood. Using complementary in vivo and in vitro models, we examined the relationship between these two processes and neuronal clearance. Accumulation of p62 (a marker of defective protein clearance) correlated with pathological tau accumulation in two mouse models of tauopathy spread; Entorhinal Cortex-tau (EC-Tau) mice where tau pathology progresses in time from EC to other brain regions, and PS19 mice injected with tau seeds. In both models and in several brain regions, p62 colocalized with human tau in a pathological conformation (MC1 antibody). In EC-Tau mice, p62 accumulated before overt tau pathology had developed and was associated with the presence of aggregation-competent tau seeds identified using a FRET-based assay. Furthermore, p62 accumulated in the cytoplasm of neurons in the dentate gyrus of EC-Tau mice prior to the appearance of MC1 positive tauopathy. However, MC1 positive tau was shown to be present at the synapse and to colocalize with p62 as shown by immuno electron microscopy. In vitro, p62 colocalized with tau inclusions in two primary cortical neuron models of tau pathology. In a three-chamber microfluidic device containing neurons overexpressing fluorescent tau, seeding of tau in the donor chamber led to tau pathology spread and p62 accumulation in both the donor and the recipient chamber. Overall, these data are in accordance with the hypothesis that the accumulation and trans-synaptic spread of pathological tau disrupts clearance mechanisms, preceding the appearance of obvious tau aggregation. A vicious cycle of tau accumulation and clearance deficit would be expected to feed-forward and exacerbate disease progression across neuronal circuits in human tauopathies
Ultrastructural and functional fate of recycled vesicles in hippocampal synapses
Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution
Clinical manifestations and outcome in Staphylococcus aureus endocarditis among injection drug users and nonaddicts: a prospective study of 74 patients
BACKGROUND: Endocarditis is a common complication in Staphylococcus aureus bacteremia (SAB). We compared risk factors, clinical manifestations, and outcome in a large, prospective cohort of patients with S. aureus endocarditis in injection drug users (IDUs) and in nonaddicts. METHODS: Four hundred and thirty consecutive adult patients with SAB were prospectively followed up for 3 months. Definite or possible endocarditis by modified Duke criteria was found in 74 patients: 20 patients were IDUs and 54 nonaddicts. RESULTS: Endocarditis was more common in SAB among drug abusers (46%) than in nonaddicts (14%) (odds ratio [OR], 5.12; 95% confidence interval [CI], 2.65–9.91; P < 0.001). IDUs were significantly younger (27 ± 15 vs 65 ± 15 years, P < 0.001), had less ultimately or rapidly fatal underlying diseases (0% vs 37%, P < 0.001) or predisposing heart diseases (20% vs 50%, P = 0.03), and their SAB was more often community-acquired (95% vs 39%, P < 0.001). Right-sided endocarditis was observed in 60% of IDUs whereas 93% of nonaddicts had left-sided involvement (P < 0.001). An extracardiac deep infection was found in 85% of IDUs and in 89% of nonaddicts (P = 0.70). Arterial thromboembolic events and severe sepsis were also equally common in both groups. There was no difference in mortality between the groups at 7 days, but at 3 months it was lower among IDUs (10%) compared with nonaddicts (39%) (OR, 5.73; 95% CI, 1.20–27.25; P = 0.02). CONCLUSION: S. aureus endocarditis in IDUs was associated with as high complication rates including extracardiac deep infections, thromboembolic events, or severe sepsis as in nonaddicts. Injection drug abuse in accordance with younger age and lack of underlying diseases were associated with lower mortality, but after adjusting by age and underlying diseases injection drug abuse was not significantly associated with mortality
Absent cervical spine pedicle and associated congenital spinal abnormalities - a diagnostic trap in a setting of acute trauma: case report
BACKGROUND: Congenital spinal abnormalities can easily be misdiagnosed on plain radiographs. Additional imaging is warranted in doubtful cases, especially in a setting of acute trauma. Case Presentation This patient presented at the emergency unit of our university hospital after a motor vehicle accident and was sent to our radiology department for imaging of the cervical spine. Initial clinical examination and plain radiographs of the cervical spine were performed but not conclusive. Additional CT of the neck helped establish the right diagnosis. CONCLUSION: CT as a three-dimensional imaging modality with the possibility of multiplanar reconstructions allows for the exact diagnosis and exclusion of acute traumatic lesions of the cervical spine, especially in cases of doubtful plain radiographs and when congenital spinal abnormalities like absent cervical spine pedicle with associated spina bifida may insinuate severe trauma
Aptamer-based multiplexed proteomic technology for biomarker discovery
Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory
Data from the Sudbury Neutrino Observatory have been used to constrain the
lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The
analysis was based on a search for gamma-rays from the de-excitation of the
residual nucleus that would result from the disappearance of either a proton or
neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90%
confidence for either neutron or proton decay modes. This is about an order of
magnitude more stringent than previous constraints on invisible proton decay
modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of
2) Submitted to Physical Review Letter
High Tumour Cannabinoid CB1 Receptor Immunoreactivity Negatively Impacts Disease-Specific Survival in Stage II Microsatellite Stable Colorectal Cancer
BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1) receptor immunoreactive intensity (CB(1)IR intensity) is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1)IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483) and invasive front (n = 486) CB(1)IR was scored from 0 (absent) to 3 (intense staining) and the data was analysed as a median split i.e. CB(1)IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins), there was a significant positive association of the tumour grade with the CB(1)IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1)IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1)IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1)IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1)IR<2 and CB(1)IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1) receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1)IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients
Why pharmacokinetic differences among oral triptans have little clinical importance: a comment
Triptans, selective 5-HT1B/1D receptor agonists, are specific drugs for the acute treatment of migraine that have the same mechanism of action. Here, it is discussed why the differences among kinetic parameters of oral triptans have proved not to be very important in clinical practice. There are three main reasons: (1) the differences among the kinetic parameters of oral triptans are smaller than what appears from their average values; (2) there is a large inter-subject, gender-dependent, and intra-subject (outside/during the attack) variability of kinetic parameters related to the rate and extent of absorption, i.e., those which are considered as critical for the response; (3) no dose-concentration–response curves have been defined and it is, therefore, impossible both to compare the kinetics of triptans, and to verify the objective importance of kinetic differences; (4) the importance of kinetic differences is outweighed by non-kinetic factors of variability of response to triptans. If no oral formulations are found that can allow more predictable pharmacokinetics, the same problems will probably also arise with new classes of drugs for the acute treatment of migraine
- …