17 research outputs found

    Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: Mucin 2-interleukin 10-deficient mice

    No full text
    Expression of the mucin MUC2, the structural component of the colonic mucus layer, is lowered in ulcerative colitis. Furthermore, interleukin (IL)-10 knockout (IL-10-/-) mice develop colitis and have reduced Muc2 levels. Our aim was to obtain insight into the role of Muc2 and IL-10 in epithelial protection. Muc2-IL-10 double-knockout (Muc2/IL-10DKO) mice were characterized and compared to Muc2 knockout (Muc2-/-), IL-10-/-and wild-type (WT) mice. Clinical symptoms, intestinal morphology and differences in epithelial-specific protein levels were analyzed. In addition, levels of the pro-inflammatory cytokines in colonic tissue and serum were determined. IL-10-/-mice were indistinguishable from WT mice throughout this experiment and showed no clinical or histological signs of colitis. Muc2/IL-10DKOand Muc2-/-mice showed significant growth retardation and clinical signs of colitis at 4 and 5 weeks, respectively. Muc2/IL-10DKOmice had a high mortality rate (50% survival/5 weeks) compared to the other types of mice (100% survival). Microscopic analysis of the colon of Muc2/IL-10DKOmice showed mucosal thickening, increased proliferation, superficial erosions and a diminished Muc4 expression. Furthermore, pro-inflammatory cytokines were significantly upregulated, both in tissue (mRNA) and systemically in Muc2/IL-10DKOmice. In conclusion, Muc2/IL-10DKOmice develop colitis, which is more severe in every aspect compared to Muc2-/-and IL-10-/-mice. These data indicate that (i) in case of Muc2 deficiency, the anti-inflammatory cytokine IL-10 can control epithelial damage, though to a limited extent and (ii) the mucus layer is most likely a key factor determining colitis

    Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice.

    No full text
    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy
    corecore