32 research outputs found

    Infant Brain Atlases from Neonates to 1- and 2-Year-Olds

    Get PDF
    Background: Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. Methodology: To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-yearold, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between agespecific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. Conclusions: We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website

    Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA.

    No full text
    The origin and geographical spread of Plasmodium falciparum is here determined by analysis of mitochondrial DNA sequence polymorphism and divergence from its most closely related species P. reichenowi (a rare parasite of chimpanzees). The complete 6 kb mitochondrial genome was sequenced from the single known isolate of P. reichenowi and from four different cultured isolates of P. falciparum, and aligned with the two previously derived P. falciparum sequences. The extremely low synonymous nucleotide polymorphism in P. falciparum (pi=0.0004) contrasts with the divergence at such sites between the two species (kappa=0.1201), and supports a hypothesis that P. falciparum has recently emerged from a single ancestral population. To survey the geographical distribution of mitochondrial haplotypes in P. falciparum, 104 isolates from several endemic areas were typed for each of the identified single nucleotide polymorphisms. The haplotypes show a radiation out of Africa, with unique types in Southeast Asia and South America being related to African types by single nucleotide changes. This indicates that P. falciparum originated in Africa and colonised Southeast Asia and South America separately

    Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization

    No full text
    The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar. Maximum hydrochar yield of 62.8% was obtained at 1000 W, 220 °C, and 5 min. The higher heating value (HHV) was improved significantly from 6.80 MJ/kg of rice husk to 16.10 MJ/kg of hydrochar. Elemental analysis results showed that the carbon content increased and oxygen content decreased in hydrochar from 25.9 to 47.2% and 68.5 to 47.0%, respectively, improving the energy and combustion properties. SEM analysis exhibited modification in structure of rice husk and improvement in porosity after MHTC, which was further confirmed from BET surface analysis. The BET surface area increased from 25.0656 m 2 /g (rice husk) to 92.6832 m 2 /g (hydrochar). Thermal stability of hydrochar was improved from 340 °C for rice husk to 370 °C for hydrochar
    corecore