15 research outputs found

    Information Transmission in Cercal Giant Interneurons Is Unaffected by Axonal Conduction Noise

    Get PDF
    What are the fundamental constraints on the precision and accuracy with which nervous systems can process information? One constraint must reflect the intrinsic “noisiness” of the mechanisms that transmit information between nerve cells. Most neurons transmit information through the probabilistic generation and propagation of spikes along axons, and recent modeling studies suggest that noise from spike propagation might pose a significant constraint on the rate at which information could be transmitted between neurons. However, the magnitude and functional significance of this noise source in actual cells remains poorly understood. We measured variability in conduction time along the axons of identified neurons in the cercal sensory system of the cricket Acheta domesticus, and used information theory to calculate the effects of this variability on sensory coding. We found that the variability in spike propagation speed is not large enough to constrain the accuracy of neural encoding in this system

    Modeling and prediction of conduction delay in an unmyelinated axon

    No full text

    Tonic 5nM DA Stabilizes Neuronal Output by Enabling Bidirectional Activity-Dependent Regulation of the Hyperpolarization Activated Current via PKA and Calcineurin

    No full text
    corecore