5 research outputs found

    Neuroligin 1 induces blood vessel maturation by cooperating with the α6 integrin.

    No full text
    The synaptic protein Neuroligin 1 (NLGN1), a cell adhesion molecule, is critical for the formation and consolidation of synaptic connectivity and is involved in vascular development. The mechanism through which NLGN1 acts, especially in vascular cells, is unknown. Here, we aimed at deepening our knowledge on the cellular activities and molecular pathways exploited by endothelial NLGN1 both in vitro and in vivo. We analyzed the phenotypic consequences of NLGN1 expression modulation in endothelial cells through in vitro angiogenesis assays and the mouse postnatal retinal angiogenesis model. We demonstrate that NLGN1, whereas not affecting endothelial cell proliferation or migration, modulates cell adhesion to the vessel stabilizing protein laminin through cooperation with the α6 integrin, a specific laminin receptor. Finally, we show that in vivo, NLGN1 and α6 integrin preferentially colocalize in the mature retinal vessels, whereas NLGN1 deletion causes an aberrant VE-cadherin, laminin and α6 integrin distribution in vessels, along with significant structural defects in the vascular tree

    Targeting QKI-7 in vivo restores endothelial cell function in diabetes

    No full text
    Vascular endothelial cell (EC) dysfunction contributes to the occurrence of diabetic complications. Here the authors report that in diabetic conditions, upregulation of the RNA binding protein QKI-7 in ECs due to the imbalance of RNA splicing factors CUG-BP and hnRNPM contributes to EC dysfunction, and that in vivo QKI-7 silencing improves blood flow recovery in diabetic mice with limb ischemia
    corecore