12 research outputs found

    Treatment options for severe hypertriglyceridemia (SHTG): the role of apheresis

    Get PDF
    Hypertriglyceridemia is associated with a number of severe diseases such as acute pancreatitis and coronary artery disease. In severe hypertriglyceridemia (SHTG, triglycerides > 1,000 mg/dL), rapid lowering of plasma triglycerides (TG) has to be achieved. Treatment regimes include nutritional intervention, the use of antihyperlipidemic drugs, and therapeutic apheresis. Apheretic treatment is indicated in medical emergencies such as hypertriglyceridemic pancreatitis

    Dabigatran-etexilate

    No full text

    Amyand’s Hernia: The Greek experience

    No full text

    Satellite-based PM concentrations and their application to COPD in Cleveland, OH

    No full text
    A hybrid approach is proposed to estimate exposure to fine particulate matter (PM(2.5)) at a given location and time. This approach builds on satellite-based aerosol optical depth (AOD), air pollution data from sparsely distributed Environmental Protection Agency (EPA) sites and local time–space Kriging, an optimal interpolation technique. Given the daily global coverage of AOD data, we can develop daily estimate of air quality at any given location and time. This can assure unprecedented spatial coverage, needed for air quality surveillance and management and epidemiological studies. In this paper, we developed an empirical relationship between the 2 km AOD and PM(2.5) data from EPA sites. Extrapolating this relationship to the study domain resulted in 2.3 million predictions of PM(2.5) between 2000 and 2009 in Cleveland Metropolitan Statistical Area (MSA). We have developed local time–space Kriging to compute exposure at a given location and time using the predicted PM(2.5). Daily estimates of PM(2.5) were developed for Cleveland MSA between 2000 and 2009 at 2.5 km spatial resolution; 1.7 million (~79.8%) of 2.13 million predictions required for multiyear and geographic domain were robust. In the epidemiological application of the hybrid approach, admissions for an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) was examined with respect to time–space lagged PM(2.5) exposure. Our analysis suggests that the risk of AECOPD increases 2.3% with a unit increase in PM(2.5) exposure within 9 days and 0.05° (~5 km) distance lags. In the aggregated analysis, the exposed groups (who experienced exposure to PM(2.5) >15.4 μg/m(3)) were 54% more likely to be admitted for AECOPD than the reference group. The hybrid approach offers greater spatiotemporal coverage and reliable characterization of ambient concentration than conventional in situ monitoring-based approaches. Thus, this approach can potentially reduce exposure misclassification errors in the conventional air pollution epidemiology studies
    corecore