11 research outputs found

    Laser capture microdissection of gonads from juvenile zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex determination and differentiation.</p> <p>Methods</p> <p>The laser capture microdissection technique enables isolation of specific cells and tissues and thereby removes the noise of gene expression from other cells or tissues in the gene expression profile. A protocol developed for laser microdissection of human gonocytes was adjusted and optimised to isolate juvenile zebrafish gonads.</p> <p>Results</p> <p>The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows staining, identification, isolation and subsequent RNA purification and amplification of gonads from individual juvenile zebrafish thereby enabling gonadal gene expression profiling.</p> <p>Conclusion</p> <p>The study presents a protocol for isolation of individual juvenile zebrafish gonads, which will enable future investigations of gonadal gene expression during the critical period of sex differentiation. Furthermore, the presented staining method is applicable to other species as it is directed towards alkaline phosphatase that is expressed in gonocytes and embryonic stem cells, which is conserved among vertebrate species.</p

    Expression profiles for six zebrafish genes during gonadal sex differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation.</p> <p>Results</p> <p>In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high in females (fig alpha and cyp19a1a) was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a). When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish.</p> <p>Conclusion</p> <p>In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph) was dmrt1 at 10 dph which indicates involvement of this gene in the early gonadal sex differentiation of males.</p

    Affine differential geometry analysis of human arm movements

    Get PDF
    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the “two-thirds power law” which connects path curvature with velocity, and “local isochrony” which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan’s moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants—equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations for the role that the equi-affine metric may play in internal representations of motion perception and production

    Orchidoid Mycorrhiza and Techniques To Investigate

    No full text

    Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio)

    No full text

    The ability to get everywhere: dispersal modes of free-living, aquatic nematodes

    No full text

    Enzyme Handbook

    No full text
    corecore