16 research outputs found

    Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

    Get PDF
    The quantum Hall effect (QHE) in two-dimensional (2D) electron gases, which is one of the most striking phenomena in condensed matter physics, involves the topologically protected dissipationless charge current flow along the edges of the sample. Integer or fractional electrical conductance are measured in units of e2/2πe^2/2\pi\hbar, which is associated with edge currents of electrons or quasiparticles with fractional charges, respectively. Here we discover a novel type of quantization of the Hall effect in an insulating 2D quantum magnet. In α\alpha-RuCl3_3 with dominant Kitaev interaction on 2D honeycomb lattice, the application of a parallel magnetic field destroys the long-range magnetic order, leading to a field-induced quantum spin liquid (QSL) ground state with massive entanglement of local spins. In the low-temperature regime of the QSL state, we report that the 2D thermal Hall conductance κxy2D\kappa_{xy}^{2D} reaches a quantum plateau as a function of applied magnetic field. κxy2D/T\kappa_{xy}^{2D}/T attains a quantization value of (π/12)(kB2/)(\pi/12)(k_B^2/\hbar), which is exactly half of κxy2D/T\kappa_{xy}^{2D}/T in the integer QHE. This half-integer thermal Hall conductance observed in a bulk material is a direct signature of topologically protected chiral edge currents of charge neutral Majorana fermions, particles that are their own antiparticles, which possess half degrees of freedom of conventional fermions. These signatures demonstrate the fractionalization of spins into itinerant Majorana fermions and Z2Z_2 fluxes predicted in a Kitaev QSL. Above a critical magnetic field, the quantization disappears and κxy2D/T\kappa_{xy}^{2D}/T goes to zero rapidly, indicating a topological quantum phase transition between the states with and without chiral Majorana edge modes. Emergent Majorana fermions in a quantum magnet are expected to have a major impact on strongly correlated topological quantum matter.Comment: 7 pages, 8 figures. Submitted versio

    Thermodynamic properties of the anisotropic frustrated spin-chain compound linarite PbCuSO4(OH)2

    No full text
    We present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) s = 1/2 frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the b axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modeling of these quantities using density matrix renormalization group (DMRG) and transfer matrix renormalization group (TMRG) approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the three-dimensional (3D) saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase. © 2013, American Physical Society
    corecore