6 research outputs found

    The heavy quark search at the LHC

    Full text link
    We explore further the discovery potential for heavy quarks at the LHC, with emphasis on the t′t' and b′b' of a sequential fourth family associated with electroweak symmetry breaking. We consider QCD multijets, ttˉ+jetst\bar{t}+\rm{jets}, W+jetsW+\rm{jets} and single tt backgrounds using event generation based on improved matrix elements and low sensitivity to the modeling of initial state radiation. We exploit a jet mass technique for the identification of hadronically decaying WW's and tt's, to be used in the reconstruction of the t′t' or b′b' mass. This along with other aspects of event selection can reduce backgrounds to very manageable levels. It even allows a search for both t′t' and b′b' in the absence of bb-tagging, of interest for the early running of the LHC. A heavy quark mass of order 600 GeV is motivated by the connection to electroweak symmetry breaking, but our analysis is relevant for any new heavy quarks with weak decay modes.Comment: 12 pages, 7 figure

    t' at the LHC: the physics of discovery

    Full text link
    A search for a fourth family at the LHC is presently a low priority, but we argue that an effective search can be conducted early with only a few inverse femtobarns of data. We discuss a method based on invariant masses of single jets for identifying the WW's originating from heavy quark decays. This can significantly increase signal to background in the reconstruction of the t′t' mass. We also study the various types of physics that can impact the background estimate, most notably higher order effects, initial state radiation, and models of the underlying event.Comment: 16 pages, 12 figures, small improvements, version to appear in JHE

    Mediated definite delegation: Certified Grid jobs in ALICE and beyond

    No full text
    Grid computing infrastructures need to provide traceability and accounting of their users activity and protection against misuse and privilege escalation, where the delegation of privileges in the course of a job submission is a key concern. This work describes an improved handling of Multi-user Grid Jobs in the ALICE Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of jobs and data. These limitations are discussed and formulated, both in general and with respect to an adoption in line with Multi-user Grid Jobs. A new general model of mediated definite delegation is developed, allowing a broker to dynamically process and assign Grid jobs to agents while providing strong accountability and long-term traceability. A prototype implementation allowing for fully certified Grid jobs is presented as well as a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, including a discussion of non-repudiation in the face of malicious Grid jobs
    corecore