74 research outputs found
Women’s responses to changes in U.S. preventive task force’s mammography screening guidelines: results of focus groups with ethnically diverse women
Background: The 2009 U.S. Preventive Services Task Force (USPSTF) changed mammography guidelines to recommend routine biennial screening starting at age 50. This study describes women’s awareness of, attitudes toward, and intention to comply with these new guidelines. Methods: Women ages 40–50 years old were recruited from the Boston area to participate in focus groups (k = 8; n = 77). Groups were segmented by race/ethnicity (Caucasian = 39%; African American = 35%; Latina = 26%), audio-taped, and transcribed. Thematic content analysis was used. Results: Participants were largely unaware of the revised guidelines and suspicious that it was a cost-savings measure by insurers and/or providers. Most did not intend to comply with the change, viewing screening as obligatory. Few felt prepared to participate in shared decision-making or advocate for their preferences with respect to screening. Conclusions: Communication about the rationale for mammography guideline changes has left many women unconvinced about potential disadvantages or limitations of screening. Since further guideline changes are likely to occur with advances in technology and science, it is important to help women become informed consumers of health information and active participants in shared decision-making with providers. Additional research is needed to determine the impact of the USPSTF change on women’s screening behaviors and on breast cancer outcomes
Recommended from our members
Mass Calibration of Optically Selected des Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data
We use cosmic microwave background (CMB) temperature maps from the 500 deg 2 SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev-Zel'dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz data sets, to estimate the background CMB gradient. For lensing reconstruction, we employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited sample with 1741 clusters. We detect lensing at a significance of 8.7σ(6.7σ) with the flux (volume)-limited sample. By modeling the reconstructed convergence using the Navarro-Frenk-White profile, we find the average lensing masses to be M 200m = (1.62 -0.25+0.32 [stat] ± 0.04 [sys.]) and (1.28 -0.18+0.14 [stat] ± 0.03[sys.])× 10 14 M ⊙ for the volume- and flux-limited samples, respectively. The systematic error budget is much smaller than the statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the galaxy weak-lensing measurements from DES
Recommended from our members
Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions
We perform a joint analysis of the auto and cross-correlations between three
cosmic fields: the galaxy density field, the galaxy weak lensing shear field,
and the cosmic microwave background (CMB) weak lensing convergence field. These
three fields are measured using roughly 1300 sq. deg. of overlapping optical
imaging data from first year observations of the Dark Energy Survey and
millimeter-wave observations of the CMB from both the South Pole Telescope
Sunyaev-Zel'dovich survey and Planck. We present cosmological constraints from
the joint analysis of the two-point correlation functions between galaxy
density and galaxy shear with CMB lensing. We test for consistency between
these measurements and the DES-only two-point function measurements, finding no
evidence for inconsistency in the context of flat CDM cosmological
models. Performing a joint analysis of five of the possible correlation
functions between these fields (excluding only the CMB lensing autospectrum)
yields and . We test
for consistency between these five correlation function measurements and the
Planck-only measurement of the CMB lensing autospectrum, again finding no
evidence for inconsistency in the context of flat CDM models.
Combining constraints from all six two-point functions yields
and .
These results provide a powerful test and confirmation of the results from the
first year DES joint-probes analysis
Recommended from our members
Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope +Planck CMB weak lensing
We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg2. With the combined measurements from four source galaxy redshift bins, we obtain a detection significance of 5.8σ. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial ΛCDM model, finding A=0.99±0.17. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the ΛCDM model, we obtain the marginalized constraints of ωm=0.261-0.051+0.070 and S8σ8ωm/0.3=0.660-0.100+0.085. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT, and Planck data
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints
We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find ωm=0.344±0.030 and S8σ8(ωm/0.3)0.5=0.773±0.016, assuming ΛCDM. When additionally combining with measurements of the CMB lensing autospectrum, we find ωm=0.306-0.021+0.018 and S8=0.792±0.012. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redmagic galaxies and high-redshift maglim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems
Recommended from our members
Cosmological lensing ratios with des Y1, SPT, and Planck
Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise ratio down to small angular scales, even where directly modelling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance CDM model, we find a best-fitting lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation
Recommended from our members
Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck
We measure the cross-correlation between redMaGiC galaxies selected from the Dark Energy Survey (DES) year 1 data and gravitational lensing of the cosmic microwave background (CMB) reconstructed from South Pole Telescope (SPT) and Planck data over 1289 deg2. When combining measurements across multiple galaxy redshift bins spanning the redshift range of 0.1
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S8=σ8ωm/0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level
ANALISIS REPRESENTASI TRADISI KEMATIAN PADA NOVEL PUYA KE PUYA KARYA FAISAL ODDANG
Death tradition is a ceremonial process that is done from generation to generation as the delivery of died people before actually going to another world (immortality).One of death traditions in Indonesia that is still done and well-known to foreign countries is Rambu Solo’ in Toraja. Rambu Solo’ is done as the process of perfecting died people. Death tradition is depicted in Puya Ke Puya novel by Faisal Oddang. Based on that thing, the problem formulation in this research, are (1) how is the representation of death ceremony stages in Puya Ke Puya novel by Faisal Oddang, (2) how are the meanings of death ceremony stages in Puya Ke Puya novel by Faisal Oddang.
The method used in this research is descriptive method of analysis using literary anthropology approach. The source of data in this study is Puya Ke Puya novel by Faisal Oddang by concerning data quotations, sentences, as well as units of stories in the novel. Data found in this researh is processed through several stages, such as (1) collecting data, (2) classifying data, (3) data assessment, (4) drawing conclusion.
The result of the analysis and discussion shows that in Puya Ke Puya novel by Faisal Oddang, it is found two processes of ceremonial stages and the meaning of process stages as representation of death tradition in Rambu Solo '. Death ceremony stages are (1) before death ceremony process and (2) during death ceremony process. Before the ceremony, there are several things that are need to be done and prepared by the family including holding big family meeting to determine when the Rambu Solo’ ceremony will be held, determining the level of death ceremony, preparing or buying buffaloes and pigs, preparing the necessary equipments. The next stage is the process of death ceremony. In this stage which includes Mappassulu ', Mangriu' Batu, Mapopengkaloa, Ma'pasonglo, Tau-tau, Lantang, Mappasilaga Tedong, Mantunu Tedong and ipalao. The meaning of Rambu Solo’ ceremony stage is a process of completion of died people so that they can get to puya. If it is not celebrated, thw aoul of died people will be stuck between heaven and earth in uncertain fate or become ghosts. It is also believed that it brings misfortune for families of died people. This is the belief of Toraja people
Cosmological lensing ratios with DES Y1, SPT and Planck
International audienceCorrelations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise ratio down to small angular scales, even where directly modelling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance ΛCDM model, we find a best-fitting lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation
- …