8,664 research outputs found
Two-state intermittency near a symmetric interaction of saddle-node and Hopf bifurcations: a case study from dynamo theory
We consider a model of a Hopf bifurcation interacting as a codimension 2 bifurcation with a saddle-node on a limit cycle, motivated by a low-order model for magnetic activity in a stellar dynamo. This model consists of coupled interactions between a saddle-node and two Hopf bifurcations, where the saddle-node bifurcation is assumed to have global reinjection of trajectories. The model can produce chaotic behaviour within each of a pair of invariant subspaces, and also it can show attractors that are stuck-on to both of the invariant subspaces. We investigate the detailed intermittent dynamics for such an attractor, investigating the effect of breaking the symmetry between the two Hopf bifurcations, and observing that it can appear via blowout bifurcations from the invariant subspaces.
We give a simple Markov chain model for the two-state intermittent dynamics that reproduces the time spent close to the invariant subspaces and the switching between the different possible invariant subspaces; this clarifies the observation that the proportion of time spent near the different subspaces depends on the average residence time and also on the probabilities of switching between the possible subspaces
Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection
We examine a model system where attractors may consist of a heteroclinic cycle between chaotic sets; this ‘cycling chaos’ manifests itself as trajectories that spend increasingly long periods lingering near chaotic invariant sets interspersed with short transitions between neighbourhoods of these sets. Such behaviour is robust to perturbations that preserve the symmetry of the system; we examine bifurcations of this state.
We discuss a scenario where an attracting cycling chaotic state is created at a blowout bifurcation of a chaotic attractor in an invariant subspace. This differs from the standard scenario for the blowout bifurcation in that in our case, the blowout is neither subcritical nor supercritical. The robust cycling chaotic state can be followed to a point where it loses stability at a resonance bifurcation and creates a series of large period attractors.
The model we consider is a ninth-order truncated ordinary differential equation (ODE) model of three-dimensional incompressible convection in a plane layer of conducting fluid subjected to a vertical magnetic field and a vertical temperature gradient. Symmetries of the model lead to the existence of invariant subspaces for the dynamics; in particular there are invariant subspaces that correspond to regimes of two-dimensional flows, with variation in the vertical but only one of the two horizontal directions. Stable two-dimensional chaotic flow can go unstable to three-dimensional flow via the cross-roll instability. We show how the bifurcations mentioned above can be located by examination of various transverse Liapunov exponents. We also consider a reduction of the ODE to a map and demonstrate that the same behaviour can be found in the corresponding map. This allows us to describe and predict a number of observed transitions in these models. The dynamics we describe is new but nonetheless robust, and so should occur in other applications
Optimal lower bounds for quantum automata and random access codes
Consider the finite regular language L_n = {w0 : w \in {0,1}^*, |w| \le n}.
It was shown by Ambainis, Nayak, Ta-Shma and Vazirani that while this language
is accepted by a deterministic finite automaton of size O(n), any one-way
quantum finite automaton (QFA) for it has size 2^{Omega(n/log n)}. This was
based on the fact that the evolution of a QFA is required to be reversible.
When arbitrary intermediate measurements are allowed, this intuition breaks
down. Nonetheless, we show a 2^{Omega(n)} lower bound for such QFA for L_n,
thus also improving the previous bound. The improved bound is obtained by
simple entropy arguments based on Holevo's theorem. This method also allows us
to obtain an asymptotically optimal (1-H(p))n bound for the dense quantum codes
(random access codes) introduced by Ambainis et al. We then turn to Holevo's
theorem, and show that in typical situations, it may be replaced by a tighter
and more transparent in-probability bound.Comment: 8 pages, 1 figure, Latex2e. Extensive modifications have been made to
increase clarity. To appear in FOCS'9
Edge-transitivity of Cayley graphs generated by transpositions
Let be a set of transpositions generating the symmetric group . The
transposition graph of is defined to be the graph with vertex set
, and with vertices and being adjacent in
whenever . In the present note, it is proved that two
transposition graphs are isomorphic if and only if the corresponding two Cayley
graphs are isomorphic. It is also proved that the transposition graph is
edge-transitive if and only if the Cayley graph is
edge-transitive
- …