1,156 research outputs found

    The mitochondrial ribosome from Locusta migratoria

    Get PDF
    Mitochondrial ribosomes from locust thorax muscles have been identified recently in our labo-ratory by specific labelling of the adhering nascent peptide chains and have been isolated from mito

    Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection

    Get PDF
    Commensal bacteria impact host health and immunity through various mechanisms, including the production of immunomodulatory molecules. Bacteroides fragilis produces a capsular polysaccharide (PSA), which induces regulatory T cells and mucosal tolerance. However, unlike pathogens, which employ secretion systems, the mechanisms by which commensal bacteria deliver molecules to the host remain unknown. We reveal that Bacteroides fragilis releases PSA in outer membrane vesicles (OMVs) that induce immunomodulatory effects and prevent experimental colitis. Dendritic cells (DCs) sense OMV-associated PSA through TLR2, resulting in enhanced regulatory T cells and anti-inflammatory cytokine production. OMV-induced signaling in DCs requires growth arrest and DNA-damage-inducible protein (Gadd45α). DCs treated with PSA-containing OMVs prevent experimental colitis, whereas Gadd45α^(−/−) DCs are unable to promote regulatory T cell responses or suppress proinflammatory cytokine production and host pathology. These findings demonstrate that OMV-mediated delivery of a commensal molecule prevents disease, uncovering a mechanism of interkingdom communication between the microbiota and mammals

    Permeability of compacting porous lavas

    Get PDF
    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17–19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals

    Formation of Structure in Snowfields: Penitentes, Suncups, and Dirt Cones

    Get PDF
    Penitentes and suncups are structures formed as snow melts, typically high in the mountains. When the snow is dirty, dirt cones and other structures can form instead. Building on previous field observations and experiments, this work presents a theory of ablation morphologies, and the role of surface dirt in determining the structures formed. The glaciological literature indicates that sunlight, heating from air, and dirt all play a role in the formation of structure on an ablating snow surface. The present work formulates a mathematical model for the formation of ablation morphologies as a function of measurable parameters. The dependence of ablation morphologies on weather conditions and initial dirt thickness are studied, focusing on the initial growth of perturbations away from a flat surface. We derive a single-parameter expression for the melting rate as a function of dirt thickness, which agrees well with a set of measurements by Driedger. An interesting result is the prediction of a dirt-induced travelling instability for a range of parameters.Comment: 28 pages, 13 figure

    Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line

    Get PDF
    Heat stress triggers an evolutionarily conserved set of responses in cells. The transcriptome responds to hyperthermia by altering expression of genes to adapt the cell or organism to survive the heat challenge. RNA-seq technology allows rapid identification of environmentally responsive genes on a large scale. In this study, we have used RNA-seq to identify heat stress responsive genes in the chicken male white leghorn hepatocellular (LMH) cell line. The transcripts of 812 genes were responsive to heat stress (p \u3c 0.01) with 235 genes upregulated and 577 downregulated following 2.5 h of heat stress. Among the upregulated were genes whose products function as chaperones, along with genes affecting collagen synthesis and deposition, transcription factors, chromatin remodelers, and genes modulating the WNT and TGF-beta pathways. Predominant among the downregulated genes were ones that affect DNA replication and repair along with chromosomal segregation. Many of the genes identified in this study have not been previously implicated in the heat stress response. These data extend our understanding of the transcriptome response to heat stress with many of the identified biological processes and pathways likely to function in adapting cells and organisms to hyperthermic stress. Furthermore, this study should provide important insight to future efforts attempting to improve species abilities to withstand heat stress through genome-wide association studies and breeding

    Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand

    Get PDF
    We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Effect of obesity on intraoperative bleeding volume in open gastrectomy with D2 lymph-node dissection for gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the effect of obesity on open gastrectomy with D2 lymph-node dissection.</p> <p>Methods</p> <p>Between January 2005 and March 2007, 100 patients with preoperatively diagnosed gastric cancer who underwent open gastrectomy with D2 lymph-node dissection were enrolled in this study. Of these, 61 patients underwent open distal gastrectomy (ODG) and 39 patients underwent open total gastrectomy (OTG). Patients were classified as having a high body-mass index (BMI; ≥ 25.0 kg/m<sup>2</sup>; <it>n </it>= 21) or a normal BMI (<25.0 kg/m<sup>2</sup>; <it>n </it>= 79). The visceral fat area (VFA) and subcutaneous fat area (SFA) were assessed as identifiers of obesity using FatScan software. Patients were classified as having a high VFA (≥ 100 cm<sup>2</sup>; <it>n </it>= 34) or a normal VFA (<100 cm<sup>2</sup>; <it>n </it>= 66). The relationship between obesity and short-term patient outcomes after open gastrectomy was evaluated. Patients were classified as having high intraoperative blood loss (IBL; ≥ 300 ml; <it>n </it>= 42) or low IBL (<300 ml; <it>n </it>= 58). Univariate and multivariate analyses were used to identify predictive factors for high IBL.</p> <p>Results</p> <p>Significantly increased IBL was seen in the following: patients with high BMI versus normal BMI; patients with gastric cancer in the upper third of the stomach versus gastric cancer in the middle or lower third of the stomach; patients who underwent OTG versus ODG; patients who underwent splenectomy versus no splenectomy; and patients with high VFA versus low VFA. BMI and VFA were significantly greater in the high IBL group than in the low IBL group. There was no significant difference in morbidity between the high IBL group and the low IBL group. Multivariate analysis revealed that patient age, OTG and high BMI or high VFA independently predicted high IBL.</p> <p>Conclusion</p> <p>It is necessary to perform operative manipulations with particular care in patients with high BMI or high VFA in order to reduce the IBL during D2 gastrectomy.</p
    corecore