7,643 research outputs found

    Effects of antibodies against tubulin on the movement of reactivated sea urchin sperm flagella

    Get PDF
    Antibodies binding to sea urchin flagellar outer-doublet tubulin have been isolated from rabbit sera by tubulin-affinity chromatography employing electrophoretically purified tubulin as the immobilized substrate. This procedure provides "induced" antitubulin antibody from immune sera and "spontaneous" antitubulin antibody from preimmune sera. These antitubulins were characterized in terms of their specificity, ability to bind to sea urchin axonemes, and effects on the motility of reactivated spermatozoa. Induced antitubulin antibody specifically reduced the bend angle and symmetry of the movement of demembranated reactivated spermatozoa without affecting the beat frequency. At identical concentrations, spontaneous antitubulin had no effect on motility. Affinity-purified induced antitubulins from three other rabbits all gave specific bend-angle inhibition, whereas their corresponding spontaneous antitubulins had no effect on the flagellar movement. The effects of antitubulin on microtubule sliding were examined by observing the sliding disintegration of elastase-digested axonemes induced by MgATP2+-. Affinity-purified induced antitubulin antibody, in quantities sufficient to completely paralyze reactivated flagella, did not inhibit microtubule sliding. The amplitude-inhibiting effect of induced antitubulin on reactivated spermatozoa may be caused by action on a mechanism responsible for controlling flagellar bending rather than by interference with the active sliding process. This is the first report of an antitubulin antibody having an inhibitory activity on microtubule-associated movement

    A XMM-Newton observation during the 2000 outburst of SAX J1808.4-3658

    Get PDF
    I present a XMM-Newton observation of the accretion driven millisecond X-ray pulsar SAX J1808.4-3658 during its 2000 outburst. The source was conclusively detected, albeit at a level of only ~2 x 10^{32} erg/s. The source spectrum could be fitted with a power-law model (with a photon index of ~2.2), a neutron star atmosphere model (with a temperature of ~0.2 keV), or with a combination of a thermal (either a black-body or an atmosphere model) and a power-law component. During a XMM-Newton observation taken approximately one year later, the source was in quiescence and its luminosity was a factor of ~4 lower. It is possible that the source spectrum during the 2000 outburst was softer than its quiescent 2001 spectrum, however, the statistics of the data do not allow to make a firm conclusion. The results obtained are discussed in the context of the 2000 outburst of SAX J1808.4-3658 and the quiescent properties of the source.Comment: Accepted for publication in ApJ, 15 January 200

    The 68,000-Dalton Neurofilament-Associated Polypeptide is a Component of Nonneuronal Cells and of Skeletal Myofibrils

    Get PDF
    Purified preparations of 10-nm neurofilaments from rat spinal cord and bovine or porcine brain contain a predominant 68,000-dalton polypeptide. This polypeptide is also a major component of the neurofilaments that copurify with brain tubulin isolated by cycles of polymerization and depolymerization. A protein that has the same isoelectric point and molecular weight as the neurofilament-associated polypeptide has also been identified as a cytoskeletal protein in a variety of avian and mammalian cell types, including baby hamster kidney (BHK-21) mouse 3T3, Novikoff rat hepatoma, chicken fibroblast, and chicken muscle cells. This protein is also a component of isolated chicken skeletal myofibrils. One-dimensional peptide maps of the 68,000-dalton proteins purified by two-dimensional isoelectric focusing/NaDodSO4/polyacrylamide gel electrophoresis from myofibrils, cycled tubulin, purified neurofilaments, and various cultured cell types were identical. In immunofluorescence this protein was associated with cytoplasmic intermediate filaments and myofibril Z discs. These results indicate that the neurofilament-associated polypeptide is a conserved protein that is present in many different cell types in addition to neuronal cells. Because some of these cells contain the major components of two other intermediate filament classes, desmin and vimentin, a given cell type may contain the subunits of at least three distinct intermediate filament types

    On the Chandra X-ray Sources in the Galactic Center

    Full text link
    Recent deep Chandra surveys of the Galactic center region have revealed the existence of a faint, hard X-ray source population. While the nature of this population is unknown, it is likely that several types of stellar objects contribute. For sources involving binary systems, accreting white dwarfs and accreting neutron stars with main sequence companions have been proposed. Among the accreting neutron star systems, previous studies have focused on stellar wind-fed sources. In this paper, we point out that binary systems in which mass transfer occurs via Roche lobe overflow (RLOF) can also contribute to this X-ray source population. A binary population synthesis study of the Galactic center region has been carried out, and it is found that evolutionary channels for neutron star formation involving the accretion induced collapse of a massive ONeMg white dwarf, in addition to the core collapse of massive stars, can contribute to this population. The RLOF systems would appear as transients with quiescent luminosities, above 2 keV, in the range from 10^31-10^32 ergs/s. The results reveal that RLOF systems primarily contribute to the faint X-ray source population in the Muno et al. (2003) survey and wind-fed systems can contribute to the less sensitive Wang et al. (2002) survey. However, our results suggest that accreting neutron star systems are not likely to be the major contributor to the faint X-ray source population in the Galactic center.Comment: 12 pages, 3 figures, 1 table ApJ in press (Dec 2004). Substantial change

    Solution of Orthopositronium lifetime Puzzle

    Full text link
    The intrinsic decay rate of orthopositronium formed in SiO2{\rm SiO_2} powder is measured using the direct 2γ2\gamma correction method such that the time dependence of the pick-off annihilation rate is precisely determined. The decay rate of orthopositronium is found to be 7.0396±0.0012(stat.)±0.0011(sys.)μs17.0396\pm0.0012 (stat.)\pm0.0011 (sys.)\mu s^{-1}, which is consistent with our previous measurements with about twice the accuracy. Results agree well with the O(α2)O(\alpha^2) QED prediction, and also with a result reported very recently using nanoporous film

    Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes

    Get PDF
    Antidynein antibodies, previously shown to inhibit flagellar oscillation and active sliding of axonemal microtubules, increase the bending resistance of axonemes measured under relaxing conditions, but not the bending resistance of axonemes measured under rigor conditions. These observations suggest that antidynein antibodies can stabilize rigor cross-bridges between outer-doublet microtubules, by interfering with ATP-induced cross-bridge detachment. Stabilization of a small number of cross-bridge appears to be sufficient to cause substantial inhibition of the frequency of flagellar oscillation. Antitubulin antibodies, previously shown to inhibit flagellar oscillation without inhibiting active sliding of axonemal microtubules, do not increase the static bending resistance of axonemes. However, we observed a viscoelastic effect, corresponding to a large increase in the immediate bending resistance. This immediate bending resistance increase may be sufficient to explain inhibition of flagellar oscillation; but several alternative explanations cannot yet be excluded

    First-principles calculation of the thermoelectric figure of merit for [2,2]paracyclophane-based single-molecule junctions

    Full text link
    Here we present a theoretical study of the thermoelectric transport through {[}2,2{]}para\-cyclo\-phane-based single-molecule junctions. Combining electronic and vibrational structures, obtained from density functional theory (DFT), with nonequilibrium Green's function techniques, allows us to treat both electronic and phononic transport properties at a first-principles level. For the electronic part, we include an approximate self-energy correction, based on the DFT+Σ\Sigma approach. This enables us to make a reliable prediction of all linear response transport coefficients entering the thermoelectric figure of merit ZTZT. Paracyclophane derivatives offer a great flexibility in tuning their chemical properties by attaching different functional groups. We show that, for the specific molecule, the functional groups mainly influence the thermopower, allowing to tune its sign and absolute value. We predict that the functionalization of the bare paracyclophane leads to a largely enhanced electronic contribution ZelTZ_{\mathrm{el}}T to the figure of merit. Nevertheless, the high phononic contribution to the thermal conductance strongly suppresses ZTZT. Our work demonstrates the importance to include the phonon thermal conductance for any realistic estimate of the ZTZT for off-resonant molecular transport junctions. In addition, it shows the possibility of a chemical tuning of the thermoelectric properties for a series of available molecules, leading to equally performing hole- and electron-conducting junctions based on the same molecular framework.Comment: 8 pages, 7 figure

    The evolution of the high energy tail in the quiescent spectrum of the soft X-ray transient Aql X-1

    Full text link
    A moderate level of variability has been detected in the quiescent luminosity of several neutron star soft X-ray transients. Spectral variability was first revealed by Chandra observations of Aql X-1 in the four months that followed the 2000 X-ray outburst. By adopting the canonical model for quiescent spectrum of soft X-ray transients, i.e. an absorbed neutron star atmosphere model plus a power law tail, Rutledge et al. (2002a) concluded that the observed spectral variations can be ascribed to temperature variations of the neutron star atmosphere. These results can hardly be reconciled with the neutron star cooling that is expected to take place in between outbursts (after deep crustal heating in the accretion phase). Here we reanalyse the Chandra spectra of Aql X-1, together with a long BeppoSAX observation in the same period, and propose a different interpretation of the spectral variability: that this is due to correlated variations of the power law component and the column density (>5, a part of which might be intrinsic to the source), while the temperature and flux of the neutron star atmospheric component remained unchanged. This lends support to the idea that the power law component arises from emission at the shock between a radio pulsar wind and inflowing matter from the companion star.Comment: 6 pages, 2 figures. Accepted for publication on Ap

    Chandra observations of the bursting X-ray transient SAX J1747.0-2853 during low-level accretion activity

    Get PDF
    We present Chandra/ACIS observations of the bursting X-ray transient SAX J1747.0-2853 performed on 18 July 2001. We detected a bright source at the position of R.A = 17^h 47^m 02.60^s and Dec. = -28 52' 58.9'' (J2000.0; with a 1 sigma error of ~0.7 arcseconds), consistent with the BeppoSAX and ASCA positions of SAX J1747.0-2853 and with the Ariel V position of the transient GX +0.2,-0.2, which was active during the 1970's. The 0.5-10 keV luminosity of the source during our observations was ~3 x 10^{35} erg/s (assuming a distance of 9 kpc) demonstrating that the source was in a low-level accretion state. We also report on the long-term light curve of the source as observed with the all sky monitor aboard the Rossi X-ray Timing Explorer. After the initial 1998 outburst, two more outbursts (in 2000 and 2001) were detected with peak luminosities about two orders of magnitude larger than our Chandra luminosity. Our Chandra observation falls in-between those two outbursts, making the outburst history for SAX J1747.0-2853 complex. Those bright 2000 and 2001 outbursts combined with the likely extended period of low level activity in-between those outbursts strongly suggest that the classification of SAX J1747.0-2853 as a faint X-ray transient was premature. It might be possible that the other faint X-ray transients also can exhibit bright, extended outbursts which would eliminate the need for a separate sub-class of X-ray transients. We discuss our results also in the context of the behavior of X-ray binaries accreting at low levels with luminosities around 10^{35} erg/s, a poorly studied accretion rate regime.Comment: Accepte for publication in ApJ, 11 July 200

    Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We have studied electron correlations in the doped two-dimensional (2D) Hubbard model by using the coupled-cluster method (CCM) to investigate whether or not the method can be applied to correct the independent particle approximations actually used in ab-initio band calculations. The double excitation version of the CCM, implemented using the approximate coupled pair (ACP) method, account for most of the correlation energies of the 2D Hubbard model in the weak (U/t1U/t \simeq 1) and the intermediate U/tU/t regions (U/t4U/t \simeq 4). The error is always less than 1% there. The ACP approximation gets less accurate for large U/tU/t (U/t8U/t \simeq 8) and/or near half-filling. Further incorporation of electron correlation effects is necessary in this region. The accuracy does not depend on the system size and the gap between the lowest unoccupied level and the highest occupied level due to the finite size effect. Hence, the CCM may be favorably applied to ab-initio band calculations on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure
    corecore