57 research outputs found
Photon-Atom Coupling with Parabolic Mirrors
Efficient coupling of light to single atomic systems has gained considerable
attention over the past decades. This development is driven by the continuous
growth of quantum technologies. The efficient coupling of light and matter is
an enabling technology for quantum information processing and quantum
communication. And indeed, in recent years much progress has been made in this
direction. But applications aside, the interaction of photons and atoms is a
fundamental physics problem. There are various possibilities for making this
interaction more efficient, among them the apparently 'natural' attempt of
mode-matching the light field to the free-space emission pattern of the atomic
system of interest. Here we will describe the necessary steps of implementing
this mode-matching with the ultimate aim of reaching unit coupling efficiency.
We describe the use of deep parabolic mirrors as the central optical element of
a free-space coupling scheme, covering the preparation of suitable modes of the
field incident onto these mirrors as well as the location of an atom at the
mirror's focus. Furthermore, we establish a robust method for determining the
efficiency of the photon-atom coupling.Comment: Book chapter in compilation "Engineering the Atom-Photon Interaction"
published by Springer in 2015, edited by A. Predojevic and M. W. Mitchell,
ISBN 9783319192307, http://www.springer.com/gp/book/9783319192307. Only
change to version1: now with hyperlinks to arXiv eprints of other book
chapters mentioned in this on
Bird-Like Anatomy, Posture, and Behavior Revealed by an Early Jurassic Theropod Dinosaur Resting Trace
BACKGROUND: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. CONCLUSIONS/SIGNIFICANCE: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods
- âŠ