34 research outputs found
Diazoxide Promotes Oligodendrocyte Precursor Cell Proliferation and Myelination
Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI), which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL) development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP) channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination.Studies were performed using rat oligodendrocyte precursor cell (OPC) cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2)). We found that K(ATP) channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP) activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia.These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI
Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated
PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction
Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated.
PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction
Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes
The original publication is available at www.springerlink.comAims/hypothesisLong-term trials in insulin-treated subjects with type 2 diabetes have shown that adjunctive treatment with the amylin analogue pramlintide reduces HbA(1)c levels and elicits weight loss. While amylin reduces food intake in rodents, pramlintide's effect on satiety and food intake in humans has not yet been assessed.MethodsIn this randomised, double-blind, placebo-controlled crossover study, 11 insulin-treated men with type 2 diabetes (age 60+/-9 years, BMI 28.9+/-4.8 kg/m(2)) and 15 non-diabetic obese men (age 41+/-21 years, BMI 34.4+/-4.5 kg/m(2)) underwent two standardised meal tests. After fasting overnight, subjects received single subcutaneous injections of either pramlintide (120 microg) or placebo, followed by a preload meal. After 1 h, subjects ate an ad libitum buffet meal. Energy intake and meal duration were measured, as were hunger ratings (using visual analogue scales), and plasma cholecystokinin, glucagon-like peptide-1 and peptide YY concentrations over time.ResultsCompared with placebo, pramlintide reduced energy intake in both the type 2 diabetes (Delta-202+/-64 kcal, -23+/-8%, pConclusions/interpretationThe results indicate that enhanced satiety and reduced food intake may explain the weight loss observed in long-term pramlintide trials.I. Chapman, B. Parker, S. Doran, C. Feinle-Bisset, J. Wishart, S. Strobel, Y. Wang, C. Burns, C. Lush, C. Weyer and M. Horowit
Satellite DNA beta overrides the pathogenicity phenotype of the C4 gene of tomato leaf curl virus but does not compensate for loss of function of the coat protein and V2 genes
We have investigated the ability of satellite DNA β to complement mutations in the CP, V2 and C4 genes of the monopartite begomovirus, tomato leaf curl virus, which are potentially involved in movement. A mutation in the coat protein was not complemented by DNA β. Mutations of the C4 and V2 genes attenuated and abolished symptoms, respectively. In the presence of the C4 mutant, but not the V2 mutant, DNA β induced typical symptoms, confirming that the satellite encodes a dominant symptom determinant. In contrast to the C4 mutant, DNA β did not enhance the viral DNA levels of the V2 mutant, suggesting that V2 is required for this phenomenon. The significance of these findings is discussed based on our present understanding of the functions of the viral genes and DNA β.M. Saeed, S. Mansoor, M. A. Rezaian, R. W. Briddon and J. W. Randle