12 research outputs found
Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling
BACKGROUND: In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCgamma, and afterwards, the interplay between PKCgamma, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. METHODOLOGY/PRINCIPAL FINDINGS: Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCgamma to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. CONCLUSIONS/SIGNIFICANCE: Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCgamma and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition
Kappa Opioid Receptor Antagonists as Potential Therapeutics for Mood and Substance Use Disorders
Drying Technology: Trends and Applications in Postharvest Processing
10.1007/s11947-010-0353-1Food and Bioprocess Technology36843-85
Novel Mechanisms of G Protein-Coupled Receptor Oligomer and Ion Channel Interactions in Nociception
Molecular control of δ-opioid receptor signalling
Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8Å high-resolution crystal structure of the human δ-opioid receptor (δ-OR), revealing the presence and fundamental role of a sodium ion mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive δ-OR sodium ion site architecture is centrally located in a polar interaction network in the 7-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn131 to alanine or valine augments constitutive arrestin-ergic signaling. Asp95Ala, Asn310Ala, and Asn314Ala mutations transform classical δ-opioid antagonists like naltrindole into potent β-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signaling, revealing that sodium-coordinating residues act as “efficacy-switches” at a prototypic G protein-coupled receptor
