16 research outputs found

    Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    Get PDF
    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV–visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30–40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90–3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles

    The diagnostic value of arginase-1 immunostaining in differentiating hepatocellular carcinoma from metastatic carcinoma and cholangiocarcinoma as compared to HepPar-1

    No full text
    <p>Abstract</p> <p>Background</p> <p>The ability to distinguish hepatocellular carcinoma (HCC) from metastatic carcinoma (MC) involving the liver and cholangiocarcinoma (CC) by immunohistochemistry has been limited by the lack of a reliable positive marker for hepatocellular differentiation. Arginase-1 is a marker for HCC recently described in some literature.</p> <p>Aim</p> <p>To examine the immunohistochemical staining of arginase-1 in cases of HCC, MC involving the liver and CC as compared to hepatocyte paraffin antigen -1 (HepPar-1) in an attempt to further define the diagnostic utility of arginase-1 in differentiating these tumors.</p> <p>Materials and methods</p> <p>A comparative immunohistochemical study of arginase-1 and HepPar-1expression was performed in 50 HCC cases, 38 cases of MC to the liver from varying sites, 12 cases of CC and 10 specimens of normal liver tissues. The predictive capacity of arginase-1 and HepPar-1 staining was determined using sensitivity, specificity, positive predictive value, and negative predictive value calculations.</p> <p>Results</p> <p>All normal liver tissues (no=10), non- neoplastic cirrhotic liver tissues adjacent to HCC (no=42) as well as those adjacent to MC (no= 9) showed diffuse and strong immunostaining for both arginase-1 and HepPar-1. Arginase-1 demonstrated positive immunoreactivity in 42 of 50 (84%) cases of HCC compared with 35 of 50 (70%) for HepPar-1. Only one of 38 (2.6%) cases of MC and one of 12 (8.3%) cases of CC showed positive immunoreactivity for arginase-1. In contrast, HepPar-1 immunoreactivity was detected in 6 of 38 (15.8%) cases of MC and in 2 of 12 (16.7%) cases of CC. Arginase -1 showed a significantly higher sensitivity for HCC diagnosis (84%) compared to HepPar -1(70%) (p=0.016). The specificity of arginase-1 for HCC diagnosis was higher (96%) than that of HepPar -1 (84%); nevertheless, this was not statistically significant (p=0.109). Howerver, the combination of both immunomarkers for the diagnosis of HCC, raised the specificity to 100%.</p> <p>Conclusion</p> <p>Arginase-1 immunostaining has a higher sensitivity and specificity than HepPar-1 for HCC diagnosis. Furthermore, the combined use of arginase-1 and HepPar-1 can provide a potentially promising tool to improve the accuracy in distinguishing HCC from metastatic carcinoma and cholangiocarcinoma.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/9991436558072434</url>.</p
    corecore