75 research outputs found
Cten Is Targeted by Kras Signalling to Regulate Cell Motility in the Colon and Pancreas
CTEN/TNS4 is an oncogene in colorectal cancer (CRC) which enhances cell motility although the mechanism of Cten regulation is unknown. We found an association between high Cten expression and KRAS/BRAF mutation in a series of CRC cell lines (p = 0.03) and hypothesised that Kras may regulate Cten. To test this, Kras was knocked-down (using small interfering (si)RNA) in CRC cell lines SW620 and DLD1 (high Cten expressors and mutant for KRAS). In each cell line, Kras knockdown was mirrored by down-regulation of Cten Since Kras signals through Braf, we tested the effect of Kras knockdown in CRC cell line Colo205 (which shows high Cten expression and is mutant for BRAF but wild type for KRAS). Cten levels were unaffected by Kras knockdown whilst Braf knockdown resulted in reduced Cten expression suggesting that Kras signals via Braf to regulate Cten. Quantification of Cten mRNA and protein analysis following proteasome inhibition suggested that regulation was of Cten transcription. Kras knockdown inhibited cell motility. To test whether this could be mediated through Cten, SW620 cells were co-transfected with Kras specific siRNAs and a Cten expression vector. Restoring Cten expression was able to restore cell motility despite Kras knockdown (transwell migration and wounding assay, p<0.001 for both). Since KRAS is mutated in many cancers, we investigated whether this relationship could be demonstrated in other tumour models. The experiments were repeated in the pancreatic cancer cell lines Colo357 & PSN-1(both high Cten expressors and mutant for KRAS). In both cell lines, Kras was shown to regulate Cten and forced expression of Cten was able to rescue loss of cell motility following Kras knockdown in PSN-1 (transwell migration assay, p<0.001). We conclude that, in the colon and pancreas, Cten is a downstream target of Kras and may be a mechanism through which Kras regulates of cell motility
Wnt signalling in adenomas of familial adenomatous polyposis patients
BACKGROUND: Epigenetic silencing of Wnt antagonists and expression changes in genes associated with Wnt response pathways occur
in early sporadic colorectal tumourigenesis, indicating that tumour cells are more sensitive to Wnt growth factors and respond
differently. In this study, we have investigated whether similar changes occur in key markers of the Wnt response pathways in the
genetic form of the disease, familial adenomatous polyposis (FAP).
METHODS: We investigated epigenetic and expression changes using pyrosequencing and real-time RT-PCR in samples from seven
patients without neoplasia, and matched normal and tumour tissues from 22 sporadic adenoma and 14 FAP patients.
RESULTS: We found that 17 out of 24 (71%) FAP adenomas were hypermethylated at sFRP1, compared with 20 out of 22 (91%) of
sporadic cases. This was reflected at the level of sFRP1 transcription, where 73% of FAP and 100% of sporadic cases were downregulated.
Increased expression levels of c-myc and FZD3 were less common in FAP (35 and 46% respectively) than sporadic tumours
(78 and 67% respectively).
CONCLUSION: Overall, the changes in expression and methylation were comparable, although the degree of change was generally
lower in the FAP adenomas. Molecular heterogeneity between multiple adenomas from individual FAP patients may reflect different
developmental fates for these premalignant tumours
Reorganisation of Wnt-response pathways in colorectal tumorigenesis
In most colorectal tumours, APC mutation stabilises β-catenin and mimics elements of Wnt growth factor signalling, but the high frequency of epigenetic loss of Wnt antagonists indicates an additional role for ligand-mediated Wnt signalling. Here, we have investigated the expression of key components of β-catenin-independent Wnt response pathways to determine whether their profiles change during the transition from normal mucosa to colorectal adenomas. Transcription of the Wnt/planar cell polarity pathway determinant NKD1 (naked cuticle homologue 1) was induced in adenomas by a median 135-fold and in cancers by 7.4-fold. While some Frizzleds (FZDs) were downregulated in adenomas, the Wnt/Ca2+ receptors FZD3 and FZD6 were induced by a median factor of 6.5 and 4.6, respectively. Naked cuticle homologue 1, FZD3 and FZD6 expression were coordinated in pre-malignant disease, but this relationship was lost in invasive cancers, where FZD induction was seen less frequently. Naked cuticle homologue 1 expression was associated with nuclear localisation of phospho-c-Jun in adenomas. In cultured cells, NKD1 transcription was induced by lithium chloride but FZD3 expression required Wnt growth factor treatment. These data show that Wnt responses are consistently directed towards both β-catenin-independent routes in early colorectal tumorigenesis and elements of this are retained in more advanced cancers. These β-catenin-independent Wnt signalling pathways may provide novel targets for chemoprevention of early colorectal tumours
The Wnt antagonist sFRP1 is downregulated in premalignant large bowel adenomas
Our previous studies have implicated the Wnt antagonist, sFRP1, as a tumour suppressor gene in advanced colorectal cancer. In this study, we set out to investigate the relationship between sFRP1 expression and large bowel adenomas, a precursor of colorectal cancer. The induction of β-catenin/TCF mediated transcription is both a frequent early event in colorectal neoplasia, and a key downstream effect of wnt growth factor signalling. Lithium treatment of a small bowel mucosal cell line (FHs 74 int) induced sFRP1 within 8 h, indicating that this gene is positively regulated by β-catenin, contrasting with the suppression of sFRP1 expression, we saw previously in advanced colorectal cancers. We therefore investigated a series of 12 adenomas and matched large bowel mucosa samples. Real-time RT–PCR analysis showed a reduction in sFRP1 expression in all 12 dysplastic lesions (median 485-fold, IQR 120- to 1500-fold), indicating factors other than β-catenin influence sFRP1 levels. In a second series of 11 adenomas, we identified methylation of the sFRP1 promotor region in all 11 samples, and this was increased compared with the surrounding normal mucosa in seven cases. Immunohistochemical analysis using a polyclonal antibody supported these findings, with sFRP1 expression reduced in many of the adenoma samples examined. sFRP1 staining in normal mucosa adjacent to the dysplastic tissue was also reduced compared with the normal controls, suggesting that sFRP1 expression may be suppressed in a field of mucosa rather than in individual cells. This study identifies sFRP1 inactivation at the premalignant stage of colorectal cancer development, indicating that these pathways may be useful targets for chemoprevention strategies in this common solid tumour
Unusual Loop-Sequence Flexibility of the Proximal RNA Replication Element in EMCV
Picornaviruses contain stable RNA structures at the 5′ and 3′ ends of the RNA genome, OriL and OriR involved in viral RNA replication. The OriL RNA element found at the 5′ end of the enterovirus genome folds into a cloverleaf-like configuration. In vivo SELEX experiments revealed that functioning of the poliovirus cloverleaf depends on a specific structure in this RNA element. Little is known about the OriL of cardioviruses. Here, we investigated structural aspects and requirements of the apical loop of proximal stem-loop SL-A of mengovirus, a strain of EMCV. Using NMR spectroscopy, we showed that the mengovirus SL-A apical loop consists of an octaloop. In vivo SELEX experiments demonstrated that a large number of random sequences are tolerated in the apical octaloop that support virus replication. Mutants in which the SL-A loop size and the length of the upper part of the stem were varied showed that both stem-length and stability of the octaloop are important determinants for viral RNA replication and virus reproduction. Together, these data show that stem-loop A plays an important role in virus replication. The high degree of sequence flexibility and the lack of selective pressure on the octaloop argue against a role in sequence specific RNA-protein or RNA-RNA interactions in which octaloop nucleotides are involved
Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility
Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility
Multiple Wnt/ß-Catenin Responsive Enhancers Align with the MYC Promoter through Long-Range Chromatin Loops
Inappropriate activation of c-Myc (MYC) gene expression by the Wnt/ß-catenin signaling pathway is required for colorectal carcinogenesis. The elevated MYC levels in colon cancer cells are attributed in part to ß-catenin/TCF4 transcription complexes that are assembled at proximal Wnt/ß-catenin responsive enhancers (WREs). Recent studies suggest that additional WREs that control MYC expression reside far upstream of the MYC transcription start site. Here, I report the characterization of five novel WREs that localize to a region over 400 kb upstream from MYC. These WREs harbor nucleosomes with post-translational histone modifications that demarcate enhancer and gene promoter regions. Using quantitative chromatin conformation capture, I show that the distal WREs are aligned with the MYC promoter through large chromatin loops. The chromatin loops are not restricted to colon cancer cells, but are also found in kidney epithelial and lung fibroblast cell lines that lack de-regulated Wnt signaling and nuclear ß-catenin/TCF4 complexes. While each chromatin loop is detected in quiescent cells, the positioning of three of the five distal enhancers with the MYC promoter is induced by serum mitogens. These findings suggest that the architecture of the MYC promoter is comprised of distal elements that are juxtaposed through large chromatin loops and that ß-catenin/TCF4 complexes utilize this conformation to activate MYC expression in colon cancer cells
Integration of the β-Catenin-Dependent Wnt Pathway with Integrin Signaling through the Adaptor Molecule Grb2
THE COMPLEXITY OF WNT SIGNALING LIKELY STEMS FROM TWO SOURCES: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified.Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of beta-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA) LRP6, Dvl2 or CA-beta-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN) Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of beta-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK), and this is blocked by DN-Grb2.These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling
- …