18 research outputs found

    TRPV channel-mediated calcium transients in nociceptor neurons are dispensable for avoidance behaviour.

    No full text
    Animals need to sense and react to potentially dangerous environments. TRP ion channels participate in nociception, presumably via Ca(2+) influx, in most animal species. However, the relationship between ion permeation and animals' nocifensive behaviour is unknown. Here we use an invertebrate animal model with relevance for mammalian pain. We analyse the putative selectivity filter of OSM-9, a TRPV channel, in osmotic avoidance behaviour of Caenorhabditis elegans. Using mutagenized OSM-9 expressed in the head nociceptor neuron, ASH, we study nocifensive behaviour and Ca(2+) influx. Within the selectivity filter, M(601)-F(609), Y604G strongly reduces avoidance behaviour and eliminates Ca(2+) transients. Y604F also abolishes Ca(2+) transients in ASH, while sustaining avoidance behaviour, yet it disrupts behavioral plasticity. Homology modelling of the OSM-9 pore suggests that Y(604) may assume a scaffolding role. Thus, aromatic residues in the OSM-9 selectivity filter are critical for pain behaviour and ion permeation. These findings have relevance for understanding evolutionary roots of mammalian nociception

    Computational analysis of 10,860 phenotypic annotations in individuals with SCN2A-related disorders

    No full text
    PURPOSE: Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype–phenotype correlations are often anecdotal, and the available phenotypic data have not been systematically analyzed. METHODS: We extracted phenotypic information from primary descriptions of SCN2A-related disorders in the literature between 2001 and 2019, which we coded in Human Phenotype Ontology (HPO) terms. With higher-level phenotype terms inferred by the HPO structure, we assessed the frequencies of clinical features and investigated the association of these features with variant classes and locations within the Na(V)1.2 protein. RESULTS: We identified 413 unrelated individuals and derived a total of 10,860 HPO terms with 562 unique terms. Protein-truncating variants were associated with autism and behavioral abnormalities. Missense variants were associated with neonatal onset, epileptic spasms, and seizures, regardless of type. Phenotypic similarity was identified in 8/62 recurrent SCN2A variants. Three independent principal components accounted for 33% of the phenotypic variance, allowing for separation of gain-of-function versus loss-of-function variants with good performance. CONCLUSION: Our work shows that translating clinical features into a computable format using a standardized language allows for quantitative phenotype analysis, mapping the phenotypic landscape of SCN2A-related disorders in unprecedented detail and revealing genotype–phenotype correlations along a multidimensional spectrum
    corecore