23 research outputs found

    Proceedings of the CSE 2017 Annual PGR Symposium (CSE-PGSym17)

    Get PDF
    Welcome to the Proceedings of the second Annual Postgraduate Research Symposium of the School of Computing, Science and Engineering (CSE-PGSym 2017). After the success of the first symposium, the school is delighted to run its second symposium which is being held in The Old Fire Station on 17th March 2017. The symposium is organised by the Salford Innovation Research Centre (SIRC) to provide a forum for the PGR community in the school to share their research work, engage with their peers and staff and stimulate new ideas. In line with SIRC’s strategy, the symposium aims to bring together researchers from the six groups that make up the centre to engage in multidisciplinary discussions and collaborations. It also aims to contribute to the creation of a collaborative environment within the Research Centre and the Groups and share information and explore new ideas. This is also aligned with the University’s ICZ (Industrial Collaboration Zone) programme for creating cultural, physical and virtual environments for collaboration, innovation and learning

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    Plant fibre reinforced polymers: where do we stand in terms of tensile properties?

    Get PDF
    Plant fibres have a unique set of properties ranging from being stiff and brittle, such as hemp and flax, to more ductile, such as coir, c ombining these properties with their cost and availability makes them attractive alternative reinforcements for the production of greener composites . This article reviews the tensile properties of various plant fibre or plant based natural fibre - reinforced polymer s reported in the literature . We critically discuss the use of plant fibres as reinforcement for the production of bio - based , renewable or green polymer composites , showing t he evolution of the properties of plant fibre composites. The reported tensile properties of plant fibre - reinforced polymer composites are compared against various renewable and n on - renewable engineering/commodity polymers as well as the tensile properties of commercially available randomly oriented glass fibre - reinforced polymers (GFRP). G reen composites containing random short plant fibres do have similar properties to randomly oriented GFRP at a lower overall part weight. U nidirectional plant fibre - reinf orced polymers offer better performance than randomly oriented GFRP and could have the potential to be adapted in applications requiring even higher mechanical performance, especially in areas where the use of costly synthetic fibres might be less attracti ve . Furthermore, plant fibres can also be regarded as effective fillers to replace more expensive polymer s and improve the green credential s of final composite parts. These features may motivate the industry to introduce more plant fibre - based products to the market
    corecore