1,088 research outputs found
Prostate response to prolactin in sexually active male rats
BACKGROUND: The prostate is a key gland in the sexual physiology of male mammals. Its sensitivity to steroid hormones is widely known, but its response to prolactin is still poorly known. Previous studies have shown a correlation between sexual behaviour, prolactin release and prostate physiology. Thus, here we used the sexual behaviour of male rats as a model for studying this correlation. Hence, we developed experimental paradigms to determine the influence of prolactin on sexual behaviour and prostate organization of male rats. METHODS: In addition to sexual behaviour recordings, we developed the ELISA procedure to quantify the serum level of prolactin, and the hematoxilin-eosin technique for analysis of the histological organization of the prostate. Also, different experimental manipulations were carried out; they included pituitary grafts, and haloperidol and ovine prolactin treatments. Data were analyzed with a One way ANOVA followed by post hoc Dunnet test if required. RESULTS: Data showed that male prolactin has a basal level with two peaks at the light-dark-light transitions. Consecutive ejaculations increased serum prolactin after the first ejaculation, which reached the highest level after the second, and started to decrease after the third ejaculation. These normal levels of prolactin did not induce any change at the prostate tissue. However, treatments for constant elevations of serum prolactin decreased sexual potency and increased the weight of the gland, the alveoli area and the epithelial cell height. Treatments for transient elevation of serum prolactin did not affect the sexual behaviour of males, but triggered these significant effects mainly at the ventral prostate. CONCLUSION: The prostate is a sexual gland that responds to prolactin. Mating-induced prolactin release is required during sexual encounters to activate the epithelial cells in the gland. Here we saw a precise mechanism controlling the release of prolactin during ejaculations that avoid the detrimental effects produced by constant levels. However, we showed that minor elevations of prolactin which do not affect the sexual behaviour of males, produced significant changes at the prostate epithelium that could account for triggering the development of hyperplasia or cancer. Thus, it is suggested that minute elevations of serum prolactin in healthy subjects are at the etiology of prostate abnormal growth
Recommended from our members
Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites.
Mixed lead-tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite-perovskite tandem solar cells. Previous reports on lead-tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 μs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.EPSRC (EP/M005143/1 and DTP funding)
Royal Society
ER
Multifrequency Strategies for the Identification of Gamma-Ray Sources
More than half the sources in the Third EGRET (3EG) catalog have no firmly
established counterparts at other wavelengths and are unidentified. Some of
these unidentified sources have remained a mystery since the first surveys of
the gamma-ray sky with the COS-B satellite. The unidentified sources generally
have large error circles, and finding counterparts has often been a challenging
job. A multiwavelength approach, using X-ray, optical, and radio data, is often
needed to understand the nature of these sources. This chapter reviews the
technique of identification of EGRET sources using multiwavelength studies of
the gamma-ray fields.Comment: 35 pages, 22 figures. Chapter prepared for the book "Cosmic Gamma-ray
Sources", edited by K.S. Cheng and G.E. Romero, to be published by Kluwer
Academic Press, 2004. For complete article and higher resolution figures, go
to: http://www.astro.columbia.edu/~muk/mukherjee_multiwave.pd
Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases.
Efforts to stabilize photoactive formamidinium (FA)–based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI3) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases. Although the bulk phase appears stable when examined macroscopically, heterogeneous cation distributions allow microscopically unstable regions to form; we found that these transitioned to hexagonal polytypes, leading to local trap-assisted performance losses and photoinstabilities. Using surface-bound ethylenediaminetetraacetic acid, we engineered an octahedral tilt into pure α-FAPbI3 thin films without any cation alloying. The templated photoactive FAPbI3 film was extremely stable against thermal, environmental, and light stressors
Prevalence of fibromyalgia in France: a multi-step study research combining national screening and clinical confirmation: The DEFI study (Determination of Epidemiology of FIbromyalgia)
<p>Abstract</p> <p>Background</p> <p>Fibromyalgia is a common disease, but little is known on its real prevalence in France. This epidemiological study aimed to assess fibromyalgia (FM) prevalence in the French metropolitan population, based on a multi-step sampling analysis, combining national screening and clinical confirmation by trained specialists.</p> <p>Methods</p> <p>a sampling method on the entire national territory was used: patients over 18 years of age accepting to take part in the study were contacted by telephone using the LFES Questionnaire, a screening test for FM. The, for patients detected by the LFESQ, a visit with a FM-trained rheumatologist was proposed to confirm FM, based on 1990 ACR criteria. Each detected patient completed the following self-questionnaires: SF36, HADS, stress VAS, Co-morbidities and Regional pain score.</p> <p>Results</p> <p>3081 patients were contacted in 5 representative French regions, of which 232 patients were screened for FM. A fibromyalgia diagnosis was then confirmed by rheumatologist in 20 cases (17 female and 3 male, 56.9 ± 13.2 years). The final estimated FM prevalence was 1.6 (CI95: 1.2%; 2.0%). No significant difference was detected between the patients accepting (CS+) and refusing (CS-) rheumatologist visit for the SF36 score, regional pain score, stress VAS scale and co-morbidities. In patients detected for FM by the LFESQ, we found a statistically significant decrease in quality of life and a statistically significant increase in stress level in patients with a confirmed diagnosis (FM+) (6.3 ± 1.9) compared to patients with an invalidated diagnosis (FM-) (4.4 ± 2.8; p = 0.007). The study also demonstrated a significant association, independently of ACR criteria, between the diagnosis of FM and several factors such as regional pain score > 10, elevated stress level, low SF36 scale score and presence of gastro-intestinal disorder co-morbidities.</p> <p>Conclusion</p> <p>Fibromyalgia is a common condition; the 1.6% prevalence calculated in the French population in our study corroborates the figures published in the European literature. Our results also suggest that criteria such as regional pain score, stress level or SF36 quality of life, could represent useful tools in fibromyalgia diagnosis.</p
Breast-feeding and risk of epithelial ovarian cancer.
Among women who have had the opportunity to breast-feed, ever breast-feeding and increasing durations of episodes of breast-feeding for each breast-fed child are associated with a decrease in the risk of ovarian cancer independent of numbers of births, which may be strongest for the endometrioid subtype
Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses?
Objectives: To determine if quantitative and qualitative shear wave elastography have roles in evaluating musculoskeletal masses. Methods: 105 consecutive patients, prospectively referred for biopsy within a specialist sarcoma centre, underwent B-mode, quantitative (m/s) and qualitative (colour map) shear wave elastography. Reference was histology from subsequent biopsy or excision where possible. Statistical modelling was performed to test elastography data and/or B-mode imaging in predicting malignancy. Results: Of 105 masses, 39 were malignant and 6 had no histology but benign characteristics at 12 months. Radiologist agreement for B-mode and elastography was moderate to excellent Kw 0.52-0.64; PABAKw 0.85-0.90). B-Mode imaging had 78.8% specificity, 76.9% sensitivity for malignancy. Quantitatively, adjusting for age, B-mode and lesion volume there was no statistically significant association between longitudinal velocity and malignancy (OR [95% CI] 0.40[0.10, 1.60], p=0.193), but some evidence that higher transverse velocity was associated with decreased odds of malignancy (0.28[0.06, 1.28], p=0.101). Qualitatively malignant masses tended to be towards the blue spectrum (lower velocities); 39.5% (17/43) of predominantly blue masses were malignant, compared to 14.3% (1/7) of red lesions. Conclusions: Quantitatively and qualitatively there is no statistically significant association between shear wave velocity and malignancy. There is no clear additional role to B-mode imaging currently. Key Points: • Correlation between shear wave velocity and soft tissue malignancy was statistically insignificant• B-mode ultrasound is 76.9 % sensitive and 78.8 % specific• Statistical models show elastography does not significantly add to lesion assessmen
Overcoming blame culture: key strategies to catalyse maternal and perinatal death surveillance and response.
Maternal and perinatal death surveillance and response (MPDSR) is a health systems process entailing the continuous cycle of identification, notification, and review of maternal and perinatal deaths (Surveillance), followed by actions to improve service delivery and quality of care and Response. Prior to the COVID-19 pandemic, there were an estimated 4.6 million maternal and newborn deaths and stillbirths each year. During the pandemic, maternal and perinatal health outcomes have worsened, especially in low- and middle-income countries, highlighting the urgent need to galvanize MPDSR to end preventable mortality and strengthen health systems
Early Divergent Host Responses in SHIVsf162P3 and SIVmac251 Infected Macaques Correlate with Control of Viremia
We previously showed intravaginal inoculation with SHIVsf162p3 results in transient viremia followed by undetectable viremia in most macaques, and some displayed subsequent immunity to superinfection with pathogenic SIVmac251. Here we compare early T cell activation, proliferation, and plasma cytokine/chemokine responses in macaques intravaginally infected with either SHIVsf162p3 or SIVmac251 to determine whether distinct differences in host responses may be associated with early viral containment. The data show SIVmac251 infection results in significantly higher levels of T cell activation, proliferation, and a mixed cytokine/chemokine “storm” in plasma in primary infection, whereas infection with SHIVsf162p3 resulted in significantly lower levels of T cell activation, proliferation, and better preservation of memory CD4+ T cells in early infection which immediately preceded control of viremia. These results support the hypothesis that early systemic immune activation, T cell proliferation, and a more prominent and broader array of cytokine/chemokine responses facilitate SIV replication, and may play a key role in persistence of infection, and the progression to AIDS. In contrast, immune unresponsiveness may be associated with eventual clearance of virus, a concept that may have key significance for therapy and vaccine design
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites.
Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices
- …