1,317 research outputs found
Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children
Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
Revisiting Estimates of CTL Killing Rates In Vivo
Recent experimental advances have allowed the estimation of the in vivo rates of killing of infected target cells by cytotoxic T lymphocytes (CTL). We present several refinements to a method applied previously to quantify killing of targets in the spleen using a dynamical model. We reanalyse data previously used to estimate killing rates of CTL specific for two epitopes of lymphocytic choriomeningitis virus (LCMV) in mice and show that, contrary to previous estimates the “killing rate” of effector CTL is approximately twice that of memory CTL. Further, our method allows the fits to be visualized, and reveals one potentially interesting discrepancy between fits and data. We discuss extensions to the basic CTL killing model to explain this discrepancy and propose experimental tests to distinguish between them
Aquatic parasite cultures and their applications
In this era of unprecedented growth in aquaculture and trade, aquatic parasite cultures are essential to better understand emerging diseases and their implications for human and animal health. Yet culturing parasites presents multiple challenges, arising from their complex, often multihost life cycles, multiple developmental stages, variable generation times and reproductive modes. Furthermore, the essential environmental requirements of most parasites remain enigmatic. Despite these inherent difficulties, in vivo and in vitro cultures are being developed for a small but growing number of aquatic pathogens. Expanding this resource will facilitate diagnostic capabilities and treatment trials, thus supporting the growth of sustainable aquatic commodities and communities
Long-Term Effects of the Cleaner Fish Labroides dimidiatus on Coral Reef Fish Communities
Cleaning behaviour is deemed a mutualism, however the benefit of cleaning interactions to client individuals is unknown. Furthermore, mechanisms that may shift fish community structure in the presence of cleaning organisms are unclear. Here we show that on patch reefs (61–285 m2) which had all cleaner wrasse Labroides dimidiatus (Labridae) experimentally removed (1–5 adults reef−1) and which were then maintained cleaner-fish free over 8.5 years, individuals of two site-attached (resident) client damselfishes (Pomacentridae) were smaller compared to those on control reefs. Furthermore, resident fishes were 37% less abundant and 23% less species rich per reef, compared to control reefs. Such changes in site-attached fish may reflect lower fish growth rates and/or survivorship. Additionally, juveniles of visitors (fish likely to move between reefs) were 65% less abundant on removal reefs suggesting cleaners may also affect recruitment. This may, in part, explain the 23% lower abundance and 33% lower species richness of visitor fishes, and 66% lower abundance of visitor herbivores (Acanthuridae) on removal reefs that we also observed. This is the first study to demonstrate a benefit of cleaning behaviour to client individuals, in the form of increased size, and to elucidate potential mechanisms leading to community-wide effects on the fish population. Many of the fish groups affected may also indirectly affect other reef organisms, thus further impacting the reef community. The large-scale effect of the presence of the relatively small and uncommon fish, Labroides dimidiadus, on other fishes is unparalleled on coral reefs
Aiming at the Global Elimination of Viral Hepatitis: Challenges along the Care Continuum
A recent international workshop, organised by the authors, analysed the obstacles facing the ambitious goal of eliminating viral hepatitis globally. We identified several policy areas critical to reaching elimination targets. These include: providing hepatitis B birth-dose vaccination to all infants within 24 hours of birth; preventing the transmission of blood-borne viruses through the expansion of national haemovigilance schemes; implementing the lessons learnt from the HIV epidemic regarding safe medical practices to eliminate iatrogenic infection; adopting point-of-care testing to improve coverage of diagnosis; and providing free or affordable hepatitis C treatment to all. We introduce Egypt as a case study for rapid testing and treatment scale-up: this country offers valuable insights to policy makers internationally, not only regarding how hepatitis C interventions can be expeditiously scaled-up, but also as a guide for how to tackle the problems encountered with such ambitious testing and treatment programmes
Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation
The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia
Nutrition intervention is beneficial in oncology outpatients receiving radiotherapy to the gastrointestinal or head and neck area
Background: Malnutrition occurs frequently in patients with cancer of the gastrointestinal or head and neck area and can lead to negative outcomes. Objective: To determine the impact of early and intensive nutrition intervention on body weight, body composition, nutritional status, global quality of life and physical function compared to usual practice in oncology outpatients receiving radiotherapy to the gastrointestinal or head and neck area. Design: Outpatients commencing at least 20 fractions of radiotherapy to the gastrointestinal or head and neck area were randomised to receive intensive, individualised nutrition counselling by a dietitian using a standard protocol and oral supplements if required, or the usual practice of the centre (general advice and nutrition booklet). Outcome parameters were measured at baseline and four, eight, and twelve weeks after commencing radiotherapy using valid and reliable tools. Results: Sixty patients (51M;9F; mean age 61.9 yr +/- 14.0) were randomised to receive either nutrition intervention (n=29) or usual care (n=31). The nutrition intervention group had statistically smaller deteriorations in weight (p < 0.001), nutritional status (p = 0.020) and global quality of life (p = 0.009) compared with those receiving usual care. Clinically, but not statistically significant differences in fat-free mass were observed between the groups (p = 0.195). Conclusions Early and intensive nutrition intervention appears beneficial in terms of minimising weight loss, deterioration in nutritional status, global quality of life and physical function in oncology outpatients receiving radiotherapy to the gastrointestinal or head and neck area. Weight maintenance in this population leads to beneficial outcomes and suggests that this, rather than weight gain, may be a more appropriate aim of nutrition intervention
- …