27 research outputs found

    Preference of Small Molecules for Local Minimum Conformations when Binding to Proteins

    Get PDF
    It is well known that small molecules (ligands) do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations). The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA) study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening

    Normal-Mode-Analysis–Monitored Energy Minimization Procedure for Generating Small–Molecule Bound Conformations

    Get PDF
    The energy minimization of a small molecule alone does not automatically stop at a local minimum of the potential energy surface of the molecule if the minimum is shallow, thus leading to folding of the molecule and consequently hampering the generation of the bound conformation of a guest in the absence of its host. This questions the practicality of virtual screening methods that use conformations at local minima of their potential energy surfaces (local minimum conformations) as potential bound conformations. Here we report a normal-mode-analysis–monitored energy minimization (NEM) procedure that generates local minimum conformations as potential bound conformations. Of 22 selected guest–host complex crystal structures with guest structures possessing up to four rotatable bonds, all complexes were reproduced, with guest mass–weighted root mean square deviations of <1.0 Å, through docking with the NEM–generated guest local minimum conformations. An analysis of the potential energies of these local minimum conformations showed that 22 (100%), 18 (82%), 16 (73%), and 12 (55%) of the 22 guest bound conformations in the crystal structures had conformational strain energies of less than or equal to 3.8, 2.0, 0.6, and 0.0 kcal/mol, respectively. These results suggest that (1) the NEM procedure can generate small–molecule bound conformations, and (2) guests adopt low-strain–energy conformations for complexation, thus supporting the virtual screening methods that use local minimum conformations

    Once upon a time the cell membranes: 175 years of cell boundary research

    Get PDF

    Focal neuromyotonia: do I love you?

    Full text link
    We present a rare case of focal neuromyotonia in a 73-year-old woman with a follow up of 5 years. The clinical picture showed a fixed contraction of the 3rd and 4th finger of the left hand. Similar to other published cases, our patient suffered from COPD and was treated with beta-2-sympathomimetics. This clinical picture shows a rare but rather salient differential diagnosis of Dupuytren's contracture. EMG of the affected muscles may yield a diagnosis and prevent the patient from a long and ineffective treatment "odyssey"
    corecore